从RPA获得资本市场认可,看AI大数据投资

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 2019年继AA拿了财神爷愿景的钱后,5月UiPath也融了5个多亿美元,估值上了70亿美金,国内的弘玑、艺赛旗、来也、云扩等都渐渐崭露头角。(我先说好这类公司我一个也没看过,以下都是信口胡说,看到这里该点退出就点不要犹豫。

2019年继AA拿了财神爷愿景的钱后,5月UiPath也融了5个多亿美元,估值上了70亿美金,国内的弘玑、艺赛旗、来也、云扩等都渐渐崭露头角。(我先说好这类公司我一个也没看过,以下都是信口胡说,看到这里该点退出就点不要犹豫。)但是我这两天简单看了些产品演示,首先觉得RPA这个概念名字起得好,机器人流程自动化,这科技感就比不少SaaS公司强很多了。其次直观感受上讲RPA市场的情况其实可以很好的折射出目前一级市场在AI大数据领域投资的矛盾情绪:一直渴望寻找能快速规模化的科技革新武器,但打开来看绝大多数都是不上不下的小工具,很有怒其不争的味道。

RPA20190823003

原文链接:https://www.51rpa.net/rpanews/2793.html

最近有些三方机构报告说今年前5个月一级市场AI行业投资总额163亿,只有去年全年投资额的11.6%;平均投资额2.1亿元/笔,较去年的4.2亿元/笔下跌了50%。还有个口径是2019年Q2人工智能领域仅完成30起投资,同比下降45%,融资金额50亿元。数字没什么意思,毕竟媒体从来都只有鼓吹和唱衰两种情绪,但平心而论目前的外部市场情绪也很难说是乐观的。

那么在这样一个环境里,怎么RPA还向阳而生了呢,我觉得一个可能的原因是RPA的产品模式看起来是一个理想的载体。早期投资人最不缺想象力,但最怕的是公司没有故事,我的想象力碰到你的故事,我们已经成功一半了。AI就非常需要想象力,而RPA就是那个好故事。

上一次AI概念全民火热还是2016年AlphaGo大杀四方,2017年就涌现了一大波初创型的AI公司,17、18两年也是资本出手这个领域最多的时候。尤其国内的主流头部基金,绝大多数都是乘着移动互联网的大浪起家的,移动互联网的好项目不论赚钱与否,都至少有一个鲜明的特点-快。谁走的最快谁流量就最多,前两名基本上就能宰杀整个市场。

但RPA的好处是什么,他恰好是个非常轻型的2B通用型工具,还是个很独立的万金油工具:大家都能做,什么场景都能用,而且还便宜,和其他系统绑定着来相当于买大赠小。虽然目前看技术门槛不高,实际效应有限,但他这种轻量的工具模式可能会是未来企业运维管理的一个潜在入口。这个就厉害了,是不是想起了QQ。

如果增添一些想象力,以上我们提到的各个应用场景,核心意义都是降本增效人力替代,RPA工具是存在镶嵌目前这些AI产品的功能的潜力的。目前可能你只采购了一类RPA自动化工具帮忙每天登入登出账户,未来可能就可以镶嵌语音交互产品做语音控制,镶嵌智能投顾产品做自动的竞对信息收集和分析,镶嵌CRM工具做自动获客,镶嵌风控产品做智能预警…产品逐步丰富,功能逐步升级,RPA就不止是个简单的工具而变成了个载体平台。

应用慢一点没关系,我先趁着现在把入口占好,等你离不开我了徐徐图之,听起来是不是就很移动互联网。

从RPA获得资本市场认可,看AI大数据投资
大家都知道在国内服务企业端和消费端非常不一样,消费端扁平,容易提炼需求,不断打磨产品快速迭代往往就容易做出规模。但国内的不同体量的企业差异非常明显,大企业体系复杂需求多样需要一体化解决方案,中小企业付费能力弱,粘性差,很难产生规模。我们过去看到在2B端站稳脚跟的无一不是在和企业合作过程中和企业业务形成了深入绑定。

马老板去年提了个PaaS概念叫大中台小前台,过去我们理解大中台是小前台的前提,因为从小前台铺成大中台的阻力是很大的,但目前看RPA可能有这个以点带面的机会。毕竟从大中台向小前台走也很苦,目前很多过去做SaaS的公司转型开始做PaaS(包括千亿美元的业内标杆Salesforce),从产品到团队都要面临转型,很多过去的SaaS团队都是独立成两个研发团队在做避免互相影响。两者方向虽然不同但终点一致:5G时代来临后企业数据爆炸,数字化转型后就是智能化转型,能牢牢抓住企业全域数据的公司一定有机会成为2B领域的新BAT。

所以我很认可资本在数据和AI领域的投入,本质上数据生意不是一个全新的产业。各个渠道有很多大数据的定义,从一个角度理解会简单一些:数据产业不是被互联网新创造的,但互联网时代对数据进行了更好地记录和留存。这就好像过去我们用石头用竹简用书本记录信息,现在我们可以用word用数据库,所以数据作为知识的一种表达形式的本质并没有发生变化。

我们记录历史、学习知识一个很重要的功能维度就是为未来提供指引,我们理应不断寻求更好的工具去帮助我们更高效地指引未来,这是人类社会发展的方向,也是我们应该努力的方向。未来IT基础设施进一步完善,企业数据更加丰富,我们会有更多的手段去改造原始产业,提升企业效率,高效利用资源…选择对的方向并推动这种积极的改变就是资本应该做的事情。

从RPA获得资本市场认可,看AI大数据投资
Gartner有一条技术成熟曲线,2018年的曲线比较有意思的地方就是我们现在在企业服务和大数据领域耳熟能详的机器学习、软件定义、物联网、自动驾驶都正处于峰值过后的调整期,我不知道他们这个曲线是怎么画出来的,但是我想如果你认可数据和AI技术一定有成熟的一天,那么未来这两年可能正是好的时机。

相关实践学习
基于阿里云短信服务的防机器人验证
基于阿里云相关产品和服务实现一个手机验证码登录的功能,防止机器人批量注册,服务端采用阿里云ECS服务器,程序语言选用JAVA,服务器软件选用Tomcat,应用服务采用阿里云短信服务,
相关文章
|
17天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
12天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在金融领域的应用:智能投资顾问
【10月更文挑战第31天】随着AI技术的快速发展,智能投资顾问在金融领域的应用越来越广泛。本文介绍了智能投资顾问的定义、工作原理、优势及未来发展趋势,探讨了其在个人财富管理、养老金管理、机构风险管理及量化交易中的典型应用,并分析了面临的挑战与机遇。智能投资顾问以其高效、低成本、个性化和全天候服务的特点,正逐步改变传统投资管理方式。
|
13天前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
23天前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
76 10
|
1月前
|
人工智能 分布式计算 大数据
大数据&AI产品月刊【2024年9月】
大数据& AI 产品技术月刊【2024年9月】,涵盖本月技术速递、2024云栖大会实录、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
人工智能 Cloud Native 数据管理
重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
阿里云发布首个AI多模数据管理平台DMS,助力业务决策提效10倍
330 17
|
2月前
|
人工智能 分布式计算 DataWorks
大数据&AI产品月刊【2024年8月】
大数据& AI 产品技术月刊【2024年8月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
3月前
|
数据采集 人工智能 安全
AI大数据处理与分析实战--体育问卷分析
本文是关于使用AI进行大数据处理与分析的实战案例,详细记录了对深圳市义务教育阶段学校“每天一节体育课”网络问卷的分析过程,包括数据概览、交互Prompt、代码处理、年级和学校维度的深入分析,以及通过AI工具辅助得出的分析结果和结论。
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
6天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
51 7