《深入浅出深度学习:原理剖析与Python实践》| 每日读本书

简介: 通俗易懂讲解深度学习核心要素,快速炼成AI工程师!杨强教授、邓侃博士力荐!入门+工具+思维+实践=深度学习速成宝典!每日搜罗最具权威专业书籍,更多图书请关注“每日读本书”。

编辑推荐

本书最大的特色在于取舍明确,一切无助于迅速理解深度学习精髓的内容全被摒弃了,并着重阐述了技术上的重点和难点;表达上深入浅出:即便是从未接触过AI知识的人,也能从作者简明清晰的表述中,一窥深度学习的殿堂。

对任何一位想成为AI/深度学习领域工程师的读者来说,《深入浅出深度学习:原理剖析与Python实践》能帮你迅速打开AI的大门,并成长为一名合格的AI工程师。

test
黄安埠 著 / 2017年6月出版

内容提要

《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和最优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。

《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的最后都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。最后,理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码。

作者简介

黄安埠

2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。

媒体评论

在这个人工智能红红火火的年代,写出一本能让初学者和“老司机”同样感到非常有用的机器学习书是一件很有意义却又不容易的事。黄安埠的《深入浅出深度学习:原理剖析与Python实践》就做到了这一点。 本书从最基本的人工智能假设出发,回顾了人工智能的发展简史,很自然地把读者带入现代常用的算法、思想和实践中。从数学基础,到编程例证,再到各个流行的开源软件包,本书起到了入门与工具的作用。同时,书的后半部也帮助读者深入了解深度学习的思维和实践。
我一直在寻找一本既可以用于教学也能给学生动手做系统的工具书,现在很高兴地向大家推荐:本书就可以达到这个目的。

—— 杨强 香港科技大学计算机系主任,中国人工智能协会副理事长

本书内容全面,但是取舍明确,有重点地深入,尤其对于技术的重点难点解释得很详细,深入浅出:着重于原理的解释和动手实践的路径,但是并不拘泥于细枝末节。

认真读完此书,读者应该拥有三项能力:一是读得懂深度学习的论文;二是读得懂深度学习的代码;三是能够自行开发简单的深度学习应用。
在深度学习技术异常火爆,深度学习工程师奇缺的当下,如何快速培养深度学习方向的工程师,是一个迫切的问题。此书是难得的好教材。

—— 邓侃 博士,北京大数医达科技有限公司CTO

精彩导读

前言

What magical trick makes us intelligent? The trick is that there is no trick. The power of intelligence stems from our vast diversity, not from any single, perfect principle.
—— Marvin Minsky
智能(Intelligence)这个词的出现最早可以追溯到古希腊时期,当时人们已经开始梦想能创造出一种像人类一样,具有独立思考和推理能力的机器,但由于受到当时生产力水平的制约,古人对“智能”的研究更多的是停留在理论探索阶段。到了近代,尤其是具有划时代意义的达特茅斯会议的召开,标志着人工智能开始从理论探索进入到理论与应用相结合的实践阶段。从世纪年代开始,人工智能的发展大致经历了三个阶段,分别从最初的逻辑推理,到统计机器学习,再到近年来逐渐占据主流地位的深度学习。

虽然深度学习是一门以神经网络为核心的学科,但人们普遍认为深度学习始于2006年,当时Hinton等人提出基于深度置信网络(DBN)逐层预训练的方法来训练深层模型,并首次提出了深度学习的概念。此后,深度学习开始进入人们的视野,但那时候深度学习更多的是少数顶尖科学家研究的领域,并没有得到大规模的应用和推广。直到2012年,Hinton和他的两个学生Alex Krizhevsky、Illya Sutskever,将卷积神经网络应用到ImageNet竞赛中,并取得了分类错误率15%的成绩,这个成绩比第二名低了近个11百分点,这一历史性的突破,使得人们开始意识到深度学习所拥有的巨大潜力,在这之后,深度学习开始在工业界,尤其是计算机视觉、语音识别和自然语言处理等领域,大规模应用,并且取得了比以往更好的效果。到了2016年,随着AlphaGo的横空出世,它的惊人表现将深度学习的热度推向了顶峰,因此2016年也被很多学者认为是人工智能元年,事实上,当前人工智能已经影响到人们生活的各个方面,如语音助手、语音搜索、无人驾驶汽车、人脸识别等,为人们的生活带来了极大的方便,人工智能也必将在今后相当长的一段时间内,继续推动着人类的技术发展。

在本书编写的过程中,市面上有关深度学习方面的中文书籍较少,因此作者希望能从理论和应用相结合的角度,对深度学习的相关知识进行较为全面的梳理,本书既可以作为初级读者的入门书籍,也适合中级读者用来加深对理论知识的理解。本书覆盖了线性代数、概率论、数值计算与最优化等基础知识,以及深度学习的两大核心:概率图模型和深度神经网络。


积跬步以至千里。每天读本书,为您搜罗最具权威专业书籍,更多图书推荐请关注每日读书

好知识需要分享,如您有喜欢的书籍想与广大开发者分享,请在文章下方评论留言,我们将为大家推荐您的爱书!

相关文章
|
1月前
|
传感器 大数据 API
Python数字限制在指定范围内:方法与实践
在Python编程中,限制数字范围是常见需求,如游戏属性控制、金融计算和数据过滤等场景。本文介绍了五种主流方法:基础条件判断、数学运算、装饰器模式、类封装及NumPy数组处理,分别适用于不同复杂度和性能要求的场景。每种方法均有示例代码和适用情况说明,帮助开发者根据实际需求选择最优方案。
67 0
|
1月前
|
API 数据安全/隐私保护 开发者
Python自定义异常:从入门到实践的轻松指南
在Python开发中,自定义异常能提升错误处理的精准度与代码可维护性。本文通过银行系统、电商库存等实例,详解如何创建和使用自定义异常,涵盖异常基础、进阶技巧、最佳实践与真实场景应用,助你写出更专业、易调试的代码。
81 0
|
6月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
818 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
30天前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
330 1
|
30天前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
104 0
|
8月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
462 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
6月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
235 7
|
2月前
|
存储 数据安全/隐私保护 开发者
Python深浅拷贝全解析:从原理到实战的避坑指南
在Python开发中,深浅拷贝是处理对象复制的关键概念。直接赋值仅复制引用,修改副本会影响原始数据。浅拷贝(如切片、copy方法)创建新容器但共享嵌套对象,适用于单层结构或需共享子对象的场景;而深拷贝(copy.deepcopy)递归复制所有层级,确保完全独立,适合嵌套结构或多线程环境。本文详解二者原理、实现方式及性能考量,帮助开发者根据实际需求选择合适的拷贝策略,避免数据污染与性能浪费。
199 1
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
2月前
|
传感器 算法 数据挖掘
Python时间序列平滑技术完全指南:6种主流方法原理与实战应用
时间序列数据分析中,噪声干扰普遍存在,影响趋势提取。本文系统解析六种常用平滑技术——移动平均、EMA、Savitzky-Golay滤波器、LOESS回归、高斯滤波与卡尔曼滤波,从原理、参数配置、适用场景及优缺点多角度对比,并引入RPR指标量化平滑效果,助力方法选择与优化。
435 0

热门文章

最新文章

推荐镜像

更多