日志服务数据加工最佳实践: 解析CSV格式的日志

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 本篇介绍日志服务数据加工最佳实践: 解析CSV格式的日志


本案例是根据客户实际应用需求中产生,以下将详细从原始数据到需求再到解决方案等几个方面向读者解答如何使用LOG DSL加工语法,解决实际生产中的问题。

原始日志

_program_:error
_severity_:6
_priority_:14
_facility_:1
topic:syslog-forwarder
content:10.64.10.20|10/Jun/2019:11:32:16 +0800|m.zf.cn|GET /zf/11874.html HTTP/1.1|200|0.077|6404|10.11.186.82:8001|200|0.060|https://yz.m.sm.cn/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei|-|Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-A00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Mobile Safari/537.36|-|-

需求

  1. _program_等于access时,对字段content做一次PSV(pipe分隔的解析),然后丢弃content字段。
  2. request: GET /css/mip-base.css HTTP/1.1这个字段需要拆分为request_method,http_version,以及request。
  3. http_referer做url解码
  4. time做格式化

解决方案

1、如果_program_是access,则执行e_psv(解析content内容,详细用法见全局操作函数部分)函数,并删除原始字段content内容

e_if(e_search("_program_==access"), e_compose(e_psv("content", "remote_addr, time_local,host,request,status,request_time,body_bytes_sent,upstream_addr,upstream_status, upstream_response_time,http_referer,http_x_forwarded_for,http_user_agent,session_id,guid", restrict=True), e_drop_fields("content")))

返回的日志为:

__source__:  1.2.3.4
__tag__:__client_ip__:  2.3.4.5
__tag__:__receive_time__:  1562845168
__topic__:  
_facility_:  1
_priority_:  14
_program_:  access
_severity_:  6
body_bytes_sent:  6404
guid:  -
host:  m.zf.cn
http_referer:  https://yz.m.sm.cn/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei
http_user_agent:  Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Mobile Safari/537.36
http_x_forwarded_for:  -
remote_addr:  10.64.10.20
request:  GET /zf/11874.html HTTP/1.1
request_time:  0.077
session_id:  -
status:  200
time_local:  10/Jun/2019:11:32:16 +0800
topic:  syslog-forwarder
upstream_addr:  10.11.186.82:8001
upstream_response_time:  0.060
upstream_status:  200

2、使用e_regex函数拆分request,解析成request_method,request,http_version

e_regex("request",r"^(?P<request_method>\w+) (?P<request>.+) (?P<http_version>\w+/[\d\.]+)$")

返回的日志为:

request:  /zf/11874.html
request_method:  GET
http_version:  HTTP/1.1

3、对http_referer做url解码

e_set("http",url_decoding("http_referer"))

返回的日志为:

http: https://yz.m.sm.cn/s?q=蛋花龙须面的做法&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei

4、对时间做格式化处理

e_set("time_local",dt_strptime(v("time"),"%d/%b/%Y:%H:%M:%S +0800"))

返回的日志为:

time_local:  2019-06-13 13:45:11

5、综上解决方案具体如下:

e_if(e_search("_program_==access"), e_compose(e_psv("content", "remote_addr, time_local,host,request,status,request_time,body_bytes_sent,upstream_addr,upstream_status, upstream_response_time,http_referer,http_x_forwarded_for,http_user_agent,session_id,guid", restrict=True), e_drop_fields("content")))
e_regex("request",r"^(?P<request_method>\w+) (?P<request>.+) (?P<http_version>\w+/[\d\.]+)$")
e_set("http",url_decoding("http_referer"))
e_set("time_local",dt_strptime(v("time"),"%d/%b/%Y:%H:%M:%S +0800"))

输出的日志

__source__:  1.2.3.4
__tag__:__client_ip__:  2.3.4.5
__tag__:__receive_time__:  1562840879
__topic__:  
_facility_:  1
_priority_:  14
_program_:  access
_severity_:  6
body_bytes_sent:  6404
guid:  -
host:  m.zf.cn
http_referer:  https://yz.m.sm.cn/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei
http_user_agent:  Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Mobile Safari/537.36
http_x_forwarded_for:  -
remote_addr:  10.64.10.20
request:  GET /zf/11874.html HTTP/1.1
request_time:  0.077
session_id:  -
status:  200
time_local:  10/Jun/2019:11:32:16 +0800
topic:  syslog-forwarder
upstream_addr:  10.11.186.82:8001
upstream_response_time:  0.060
upstream_status:  200
http: https://yz.m.sm.cn/s?q=蛋花龙须面的做法&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei

进一步参考

欢迎扫码加入官方钉钉群获得实时更新与阿里云工程师的及时直接的支持:
image

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
23天前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
49 8
|
21天前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
114 49
|
1月前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
49 2
|
1月前
|
JavaScript API 开发工具
<大厂实战场景> ~ Flutter&鸿蒙next 解析后端返回的 HTML 数据详解
本文介绍了如何在 Flutter 中解析后端返回的 HTML 数据。首先解释了 HTML 解析的概念,然后详细介绍了使用 `http` 和 `html` 库的步骤,包括添加依赖、获取 HTML 数据、解析 HTML 内容和在 Flutter UI 中显示解析结果。通过具体的代码示例,展示了如何从 URL 获取 HTML 并提取特定信息,如链接列表。希望本文能帮助你在 Flutter 应用中更好地处理 HTML 数据。
110 1
|
21天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
监控 Kubernetes Shell
使用阿里云日志服务采集查询kubernetes容器日志
使用阿里云日志收集查询kubernetes容器日志
2922 0
|
1月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
223 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
2月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
279 3
|
10天前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
|
2月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1674 14

相关产品

  • 日志服务
  • 推荐镜像

    更多