日志服务数据加工最佳实践: 使用正则与grok解析Ngnix日志

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本篇介绍日志服务数据加工最佳实践: 使用正则表达式与grok解析Ngnix日志, 使用grok自带的400+模式实现最简化解析


本部分实践案例,旨在通过一种场景多种解决方案的对比,选择出一种最快最好的解决方案。本专题主要讲解正则解析方面的场景实践。

场景:解析Nginx日志

以下以一条Nginx日志为例,向大家展开如何解析Nginx日志的多种方案。

203.208.60.89 - - [04/Jan/2019:16:06:38 +0800] "GET /atom.xml HTTP/1.1" 200 273932 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

需求

1、从Nginx日志中提取出clientip、ident、auth、timestamp、verb、request、url、httpversion、response、bytes、referrer、agent信息
2、对解析出来的url进行再提取,提取出url_proto、url_host、url_param
3、对解析出来的url_param进行再提取,提取出url_path、url_query信息

原始日志

在控制台收集到的日志格式是string格式,如下所示:

__source__:  30.43.16.15
__tag__:__client_ip__:  12.120.75.140
__tag__:__receive_time__:  1563443076
content: 203.208.60.89 - - [04/Jan/2019:16:06:38 +0800] "GET http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0 HTTP/1.1" 200 273932 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

LOG DSL编排

本部分将提供两种方案,解决以上需求。

方案一:正则解析

1、针对需求1解析Nginx日志的加工编排如下:

e_regex("content",r'(?P<ip>\d+\.\d+\.\d+\.\d+)( - - \[)(?P<datetime>[\s\S]+)\] \"(?P<verb>[A-Z]+) (?P<request>[\S]*) (?P<protocol>[\S]+)["](?P<code>\d+) (?P<sendbytes>\d+) ["](?P<refere>[\S]*)["] ["](?P<useragent>[\S\s]+)["]')

预览处理日志:

ip: 203.208.60.89
datetime: 04/Jan/2019:16:06:38 +0800
verb: GET
request: http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0
protocol: HTTP/1.1
code: 200
sendbytes: 273932
refere: -
useragent: Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2、针对需求2解析第一步加工后得到的url的加工编排如下:

e_regex('url',r'(?P<url_proto>(\w+)):\/\/(?P<url_domain>[a-z0-9.]*[^\/])(?P<uri_param>(.+)$)')

预览处理日志:

url_proto: http
url_domain: cdn1cdedge0001.coxlab.net
uri_param: /_astats?application=&inf.name=eth0

3、针对需求3解析第二步得到的url参数的加工编排如下:

e_regex('uri_param',r'(?P<uri_path>\/\_[a-z]+[^?])\?(?<uri_query>(.+)$)')

预览处理日志:

uri_path: /_astats
uri_query: application=&inf.name=eth0

4、综上LOG DSL规则可以如以下形式:

"""第一步:初步解析Nginx日志"""
e_regex("content",r'(?P<ip>\d+\.\d+\.\d+\.\d+)( - - \[)(?P<datetime>[\s\S]+)\] \"(?P<verb>[A-Z]+) (?P<request>[\S]*) (?P<protocol>[\S]+)["](?P<code>\d+) (?P<sendbytes>\d+) ["](?P<refere>[\S]*)["] ["](?P<useragent>[\S\s]+)["]')
"""第二步:解析第一步得到的url"""
e_regex('url',r'(?P<url_proto>(\w+)):\/\/(?P<url_domain>[a-z0-9.]*[^\/])(?P<uri_param>(.+)$)')
"""第三步:解析第二步的到的url参数"""
e_regex('uri_param',r'(?P<uri_path>\/\_[a-z]+[^?])\?(?<uri_query>(.+)$)')

预览综上处理后的日志如下:

__source__:  30.43.16.15
__tag__:__client_ip__:  12.120.75.140
__tag__:__receive_time__:  1563443076
content: 203.208.60.89 - - [04/Jan/2019:16:06:38 +0800] "GET http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0 HTTP/1.1" 200 273932 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
ip: 203.208.60.89
datetime: 04/Jan/2019:16:06:38 +0800
verb: GET
request: http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0
protocol: HTTP/1.1
code: 200
sendbytes: 273932
refere: -
useragent: Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)
url_proto: http
url_domain: cdn1cdedge0001.coxlab.net
uri_param: /_astats?application=&inf.name=eth0
uri_path: /_astats
uri_query: application=&inf.name=eth0                        

方案二:Grok解析

1、使用grok模式解析Nginx日志,只需要COMBINEDAPACHELOG模式即可。

模式 规则 说明
COMMONAPACHELOG `%{IPORHOST:clientip} %{HTTPDUSER:ident} %{USER:auth} [%{HTTPDATE:timestamp}] "(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})? %{DATA:rawrequest})" %{NUMBER:response} (?:%{NUMBER:bytes} -)` 解析出clientip、ident、auth、timestamp、verb、request、httpversion、response、bytes字段内容
COMBINEDAPACHELOG %{COMMONAPACHELOG} %{QS:referrer} %{QS:agent} 解析出上一行中所有字段,另外还解析出referrer、agent字段

针对需求1解析Nginx日志的加工编排如下:

e_regex('content',grok('%{COMBINEDAPACHELOG}'))

预览处理日志:

clientip: 203.208.60.89
ident: -
auth: -
timestamp: 04/Jan/2019:16:06:38 +0800
verb: GET
request: http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0
httpversion: 1.1
response: 200
bytes: 273932
referrer: "-"
agent: "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

2、解析request只需要使用grok的以下几种模式组合即可完成解析:

模式 规则 说明
URIPROTO [A-Za-z]+(\+[A-Za-z+]+)? 匹配url中的头部分,如http://hostname.domain.tld/_astats?application=&inf.name=eth0会匹配到http
USER [a-zA-Z0-9._-]+ 匹配字母、数字和._-组合
URIHOST %{IPORHOST}(?::%{POSINT:port})? 匹配IPORHOST和POSINT
URIPATHPARAM %{URIPATH}(?:%{URIPARAM})? 匹配url参数部分

针对需求2解析第一步加工后得到的request的加工编排如下:

e_regex('request',grok("%{URIPROTO:uri_proto}://(?:%{USER:user}(?::[^@]*)?@)?(?:%{URIHOST:uri_domain})?(?:%{URIPATHPARAM:uri_param})?"))

预览处理日志:

url_proto: http
url_domain: cdn1cdedge0001.coxlab.net
uri_param: /_astats?application=&inf.name=eth0

3、解析url_param可以使用grok的以下模式即可完成解析:

模式 规则 说明
GREEDYDATA .* 匹配任意或多个除换行符

针对需求3解析第二步得到的url参数的加工编排如下:

e_regex('url_param',grok("%{GREEDYDATA:uri_path}\?%{GREEDYDATA:uri_query}"))

预览处理日志:

uri_path: /_astats
uri_query: application=&inf.name=eth0

4、综上LOG DSL规则可以如以下形式:

"""第一步:初步解析Nginx日志"""
e_regex('content',grok('%{COMBINEDAPACHELOG}'))
"""第二步:解析第一步得到的url"""
e_regex('request',grok("%{URIPROTO:uri_proto}://(?:%{USER:user}(?::[^@]*)?@)?(?:%{URIHOST:uri_domain})?(?:%{URIPATHPARAM:uri_param})?"))
"""第三步:解析第二步的到的url参数"""
e_regex('url_param',grok("%{GREEDYDATA:uri_path}\?%{GREEDYDATA:uri_query}"))

预览综上处理后的日志如下:

__source__:  30.43.16.15
__tag__:__client_ip__:  12.120.75.140
__tag__:__receive_time__:  1563443076
content: 203.208.60.89 - - [04/Jan/2019:16:06:38 +0800] "GET http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0 HTTP/1.1" 200 273932 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
clientip: 203.208.60.89
ident: -
auth: -
timestamp: 04/Jan/2019:16:06:38 +0800
verb: GET
request: http://cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0
httpversion: 1.1
response: 200
bytes: 273932
referrer: "-"
agent: "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
url_proto: http
url_domain: cdn1cdedge0001.coxlab.net
uri_param: /_astats?application=&inf.name=eth0
uri_path: /_astats
uri_query: application=&inf.name=eth0                        

对比

综上所述,可以看出使用正则解析和Grok模式解析Nginx日志两种方案优劣。

正则方案

对于不是很熟悉的开发人员使用正则解析日志效率会比较低,而且学习成本会比较大,另外一点是灵活性不够,比如在request内容改成

http://twiss@cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0

那么还使用以上正则

(?P<url_proto>(\w+)):\/\/(?P<url_domain>[a-z0-9.]*[^\/])(?P<uri_param>(.+)$)

request则会解析成

url_proto: http
url_domain: twiss@
uri_param: cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0

很显然,如果还使用原来的正则模式的话,解析出来的内容是不符合要求的。因此,还需要修改正则模式才能正常解析。由此可见,灵活的使用正则的解析的难度比较高。

Grok方案

Grok模式解析对于开发人员是友好的,对于非开发人员亦然如此。Grok学习成本低,只需要了解哪些模式代表的哪些字段类型就可以轻松解析你想解析的日志内容。Grok学习曲线低,可以通过用户文档中GROK参考来学习实践。

Grok灵活性高,比如还是以上述正则方案中例子为参考:

request内容改成

http://twiss@cdn1cdedge0001.coxlab.net/_astats?application=&inf.name=eth0

Grok模式不变

e_regex('request',grok("%{URIPROTO:uri_proto}://(?:%{USER:user}(?::[^@]*)?@)?(?:%{URIHOST:uri_domain})?(?:%{URIPATHPARAM:uri_param})?"))

request则会解析成

url_proto: http
user: twiss
url_domain: cdn1cdedge0001.coxlab.net
uri_param: /_astats?application=&inf.name=eth0

在Grok模式不变的情况下,request添加user的情况下,还是能够正确解析出正确的日志内容。

结论

从灵活性、高效性、低成本、学习曲线等方面对比, GROK都要比直接使用正则表达式要有优势. 但是GROK模式的本质其实还是正则表达式, 但是数据加工已经提供了400种模式包装了场景的正则, 建议优先使用. 当然在需要的情况下, 也可以混合使用GROK与正则甚至自行编写需要的正则.

进一步参考

欢迎扫码加入官方钉钉群获得实时更新与阿里云工程师的及时直接的支持:
image

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
14天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
125 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
21天前
|
机器学习/深度学习 安全 大数据
揭秘!企业级大模型如何安全高效私有化部署?全面解析最佳实践,助你打造智能业务新引擎!
【10月更文挑战第24天】本文详细探讨了企业级大模型私有化部署的最佳实践,涵盖数据隐私与安全、定制化配置、部署流程、性能优化及安全措施。通过私有化部署,企业能够完全控制数据,确保敏感信息的安全,同时根据自身需求进行优化,提升计算性能和处理效率。示例代码展示了如何利用Python和TensorFlow进行文本分类任务的模型训练。
62 6
|
24天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3982 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
15天前
|
PHP 开发者 容器
PHP命名空间深度解析与最佳实践####
本文深入探讨了PHP中命名空间(namespace)的机制、应用场景及最佳实践,旨在帮助开发者有效避免命名冲突,提升代码的组织性和可维护性。通过实例讲解,本文将引导您理解如何在实际项目中灵活运用命名空间,以及如何遵循业界公认的最佳实践来优化您的PHP代码结构。 ####
|
14天前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
37 2
|
14天前
|
PHP 开发者
PHP 7新特性深度解析及其最佳实践
【10月更文挑战第31天】本文将深入探讨PHP 7带来的革新,从性能提升到语法改进,再到错误处理机制的变革。我们将通过实际代码示例,展示如何高效利用这些新特性来编写更加健壮和高效的PHP应用。无论你是PHP新手还是资深开发者,这篇文章都将为你打开一扇窗,让你看到PHP 7的强大之处。
|
20天前
|
JavaScript API 开发工具
<大厂实战场景> ~ Flutter&鸿蒙next 解析后端返回的 HTML 数据详解
本文介绍了如何在 Flutter 中解析后端返回的 HTML 数据。首先解释了 HTML 解析的概念,然后详细介绍了使用 `http` 和 `html` 库的步骤,包括添加依赖、获取 HTML 数据、解析 HTML 内容和在 Flutter UI 中显示解析结果。通过具体的代码示例,展示了如何从 URL 获取 HTML 并提取特定信息,如链接列表。希望本文能帮助你在 Flutter 应用中更好地处理 HTML 数据。
100 1
|
22天前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
51 1
|
20天前
|
JSON 前端开发 JavaScript
API接口商品详情接口数据解析
商品详情接口通常用于提供特定商品的详细信息,这些信息比商品列表接口中的信息更加详细和全面。以下是一个示例的JSON数据格式,用于表示一个商品详情API接口的响应。这个示例假定API返回一个包含商品详细信息的对象。
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
227 3

相关产品

  • 日志服务
  • 推荐镜像

    更多