数据智能模型——数据中台航母的作战集群

简介: 中台是“让听得见炮火的人召唤炮火”,面对如火如荼的中台建设潮,只有先解释了“数据该怎么用”的问题,才有必要进一步解答“数据怎么来”、“数据怎么存”的问题。

中台是“让听得见炮火的人召唤炮火”,面对如火如荼的中台建设潮,只有先解释了“数据该怎么用”的问题,才有必要进一步解答“数据怎么来”、“数据怎么存”的问题。

为什么需要数据智能模型

中台,2019最火热的词汇之一。

如果把数据中台比喻为现代企业数据管理的航空母舰,无疑现在这艘航母还是一艘孤零零的巨无霸,没有护卫舰队,没有搭载作战集群,更没有攻击性核潜艇。

现在的问题是,我们建好了「中央发电站」,却发现缺少能释放其巨大产能的「电灯泡」。

我们空有单集群上万台服务器规模的算力基础设施,仅仅只是让报表跑得更快或者消除数据孤岛?这无疑是对海量算力最大的资源浪费,市场呼唤着能把这些庞大算力释放出来的数据应用。

什么样的系统才能与巨大的算力相匹配?什么样的系统才能真实有力地去解决业务实际问题?数据智能模型!

什么是数据智能模型

什么是数据智能模型?他和传统的信息化系统有什么区别?智能又体现在什么地方?

这里需要解释下「信息化系统」和「智能化系统」的区别,「信息化系统」本质是编辑数据库,一个系统如果核心是靠人工决策并且依赖大量人工交互来完成任务,那么就是信息化系统。而「智能化系统」则是依靠机器高度自动化完成“数据清洗—问题定位—业务决策”等一系列操作,以任务为输入,以处理结果为输出。

按照这个标准,市面上形形色色的智能系统都只是借智能之名鱼目混珠。

智能化系统的智能程度可以参考下图,L0向L4意味着智能化程度越高。
1

对标企业管理发展的四个阶段,企业必须完成整个信息化工程L0至L4的改造升级。
2

数据智能模型——智能调补货系统

企业的信息建设其实是企业管理升级的投影。当然这么说还是比较抽象。

拿商品运营中最基础的货品调补环节举例。

1、L0阶段:在企业早期阶段,区域门店的补货、门店间的调货,不是一个非常严重的问题,一个人列几张表格,花点心思就能搞定,仅仅做到标准化管理即可;

2、L1~2阶段:随着规模的扩大,当门店达到上百家,这时候就必须组建商品部门,去协调上百家门店之间的商品短缺和区域间不平衡的情况,这里就需要流程化管理。半自动化或者自动化管理系统可以辅助商品运营人员形成企业独有的运营风格和策略;

3、L3~4阶段:数据的传输效率会随着节点(人员)的增加边际递减,随着规模的进一步扩大,想依靠加人头来管好线下的整盘货,就变成了一个人员臃肿、效率低下、成效难以衡量的问题,期间伴随着高昂的人员培训成本和核心员工离职的风险。智能化系统也就应运而生。

我们近期服务的某集团正处于流程化管理向自动化管理过渡阶段,商品运营部门人员多达20余人,这20余人平均每周需要投入四天时间去处理商品的补货、调货数据。

这20余人训练有素,需要人肉去判断500家门店商品的盈亏状态,在供大于求的时候优先满足哪种类型的门店,应该满足多少?供小于求的时候?一个熟练的投放专员在每次补调货的时候需要同时考虑十多个衡量指标。

现在某集团预备在未来一年内开启加盟模式,门店预计扩张到4000家,一个熟练的商品专员平均培养周期最少2年。

门店扩大十倍,商品专员也相应扩大十倍?

智能调补货系统,集采了天气、区域、位置等外部数据,结合行业先进的调补货经验,上线后预计可达到:

1、采用深度学习算法,原先需要十多人协作完成的补货数据,机器仅仅在几分钟内就完成了全部补货过程,即使千余家门店的调补货计算量也不在话下,无需辛苦招人培训,还要随时警惕竞争对手来挖角;

2、原本需要整个商品部反复拉扯的补货问题,系统自动按照毛利最优解决方案,完成了全部的调度工作,预计可将商品平均周售罄率提升到60%~70%,双周售罄率稳定提升到80%以上,区域间调拨次数降低30%以上(18年某集团仅补货物流成本可达250万);

3、业务人员的脑力被极大释放,珍贵的核心员工只需管理好算法模型的优化方向和数据补充,有更多时间去思考商品本身的运营策略,商品部也由一个成本部门升级为利润部门。

巨舰还是得配利炮

云计算浪潮降低了硬件采购的成本,直接催生了今天中台生态的繁荣。

今日中国的中小企业可以低成本搭建自己的数据中台,有机会从源头就开始校正数据化建设方向,但是中台的盛行和业务发展的需求,必然会倒逼业务前台的升级改造。

3_2

中台战略之下,现行企业的方方面面其实都值得重构升级一遍。

相关实践学习
使用CLup和iSCSI共享盘快速体验PolarDB for PostgtreSQL
在Clup云管控平台中快速体验创建与管理在iSCSI共享盘上的PolarDB for PostgtreSQL。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
4天前
|
机器学习/深度学习 存储 人工智能
为什么AI处理私有数据,需要使用向量数据库
大语言模型通过概率和向量数据库查询来生成高质量内容,当预测概率低于阈值时,利用相似性从本地数据中获取信息,向量数据库通过向量化、表示、查询、搜索和解码等步骤,帮助模型处理未知数据。
|
5月前
|
关系型数据库 定位技术 数据库
空间数据中台是什么,怎么用?DataQ空间智能全面开放邀测
阿里云空间数据中台不等同于GIS,它是在DataQ数据资源平台中体系化的整合了空间数据的处理能力,用于空间数据治理和空间领域数字化转型需要。DataQ空间智能包括空间数据同步、空间数据查询和浏览、空间数据管理、空间数据服务和空间数据资产管理等能力。用户可以通过阿里云官网注册账号并开通DataQ的试用白名单来使用DataQ空间智能。在使用过程中,需要注意空间数据源的配置、zip压缩方式、计算集群的设置等问题。DataQ空间智能公共云的开通,将大幅度降低体验和试用的门槛和成本,为线下项目的选型做好准备;同时仍然需要一定的技术投入和耐心,但数字化转型是未来的大势所趋,空间数据中台是必然的选择。
空间数据中台是什么,怎么用?DataQ空间智能全面开放邀测
|
3天前
|
SQL 人工智能 自然语言处理
利用LangChain构建的智能数据库操作系统
LangChain库简化了数据库与AI结合,通过LLM将自然语言转为SQL语句进行查询和数据分析。它降低了数据查询的门槛,支持创建基于数据库的问答机器人和数据分析面板。实战案例展示了如何使用LangChain进行查询并以自然语言形式返回结果。通过限制表名,可处理大量数据。总结:掌握LangChain在数据库操作、查询及结果自然语言转换的应用。
30 0
|
3天前
|
Cloud Native 关系型数据库 MySQL
云原生数据仓库产品使用合集之在ADB中,如何将源数据的多表(数据结构一致)汇总到一张表
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
4天前
|
数据采集 存储 人工智能
【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源
【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源
65 0
|
4天前
|
人工智能 自然语言处理 API
深入浅出LangChain与智能Agent:构建下一代AI助手
LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。
279793 57
深入浅出LangChain与智能Agent:构建下一代AI助手
|
4天前
|
关系型数据库 MySQL OLAP
PolarDB +AnalyticDB Zero-ETL :免费同步数据到ADB,享受数据流通新体验
Zero-ETL是阿里云瑶池数据库提供的服务,旨在简化传统ETL流程的复杂性和成本,提高数据实时性。降低数据同步成本,允许用户快速在AnalyticDB中对PolarDB数据进行分析,降低了30%的数据接入成本,提升了60%的建仓效率。 Zero-ETL特性包括免费的PolarDB MySQL联邦分析和PolarDB-X元数据自动同步,提供一体化的事务处理和数据分析,并能整合多个数据源。用户只需简单配置即可实现数据同步和实时分析。
|
4天前
|
存储 分布式计算 API
adb spark的lakehouse api访问内表数据,还支持算子下推吗
【2月更文挑战第21天】adb spark的lakehouse api访问内表数据,还支持算子下推吗
108 2
|
7月前
|
存储 Java 数据库连接
云数据仓库ADB不管是jdbc写入或者dts同步,均会存在丢数据的情况?
云数据仓库ADB不知道是不是磁盘出问题了不管是jdbc写入或者dts同步,均会存在丢数据的情况?
57 2
|
4天前
|
SQL 分布式计算 关系型数据库
Dataphin实现MaxCompute外表数据快速批量同步至ADB MySQL
当前大数据时代背景下,企业对数据的处理、分析和实时应用的需求日益增强。阿里云MaxCompute广泛应用于海量数据的ETL、数据分析等场景,但在将处理后的数据进一步同步至在线数据库系统,如ADB MySQL 3.0(阿里云自研的新一代云原生关系型数据库MySQL版)以支持实时查询、业务决策等需求时,可能会遇到数据迁移速度缓慢的问题。 DataphinV3.14版本支持外表导入SQL的带参调度,实现通过MaxCompute外表的方式将数据批量同步至ADB MySQL 3.0中,显著提升数据迁移的速度和效率。
299 1

热门文章

最新文章