爆料!传阿里人靠脸吃饭,真相是......

简介: 图像识别是机器智能的一个重要领域。图像识别使得机器能够“看”事物,甚至包括人类无法看到的事物。本期,我们将为大家介绍一个“图像识别”在阿里技术实践案例,和大家一起发现图像算法之美。

导读:图像识别是机器智能的一个重要领域。图像识别使得机器能够“看”事物,甚至包括人类无法看到的事物。本期,我们将为大家介绍一个“图像识别”在阿里技术实践案例,和大家一起发现图像算法之美。

从进出办公大楼到会议室,从取快递到食堂吃饭,只需对准摄像头刷一下脸,就能轻松完成通行、支付、取件等操作。在阿里巴巴,“脸”已经成为员工日常生活办公的通行证。

20190723001652.jpg

阿里园区食堂使用人脸支付

作为园区“刷脸”的主要技术支持方,阿里巴巴企业智能园区大脑技术团队负责人杨含飞(花名:少昊)表示,去年年初,第一台人脸闸机才正式在园区落地。而现在,“人脸”已经运用在阿里园区的方方面面,平均每天会进行20多万次的人脸识别。

此外,随着会议活动对安防要求的增加,一些大型展会对人脸识别的需求也变得越来越强烈。在去年9月云栖大会上,阿里内部的这套人脸闸机,支持现场12万人次的通行。

20190723001709.gif

云栖大会上的人脸门禁

那么,在这些大规模的人员识别场景中,阿里内部的人脸识别究竟是如何做保障的?
今天,我们邀请少昊亲自揭秘阿里巴巴人脸识别的优化方案。

人脸识别时,首先需要对方提供一张照片进行人脸注册,然后在识别过程中,通过终端照片去检测当前画面照片上是否有人脸出现。如果有就会去提取特征并与服务端算法进行对比,来确认两者之间是否一致。可见,人脸识别实际上是特征的“提取”与“对比”。

少昊认为,在这一过程中,特征提取是否完整与充分,对比是否快速准确,与识别算法、终端软硬件以及人脸底库照片都有关系。所以,企业智能在做大型人员识别的优化时,主要从这三个方向入手:

终端的优化

终端的优化分为硬件与软件。

硬件上,主要针对摄像头采用宽动态技术,IPS优化,从捕捉画面前景与背景处理上达到清晰均衡的要求,解决逆光问题,让人脸识别更加快速有效。


20190723001845.jpg

软件上,我们主要对拍摄清晰度做管理和控制。一般来说,在捕捉到识别图像后,首先会对每帧图像进行数据监控与评估。在经过数据化打标之后,会给图像进行分类,来考察不同清晰度下的图像通过率。以及不同清晰度与角度下,图像的实际分布情况。这能有效管控识别速度与识别距离,确保整个识别过程的通行效率。

识别算法的优化

误识率是人脸识别的基础,所以在识别算法上,技术人员一是对误识进行控制;二是对相似度进行管理。

因为受算法性能影响,随着人脸底库的增加,算法性能会逐步降低。如何在识别服务上进行优化,成为人脸识别的一大关键。

用户行为产 生的大量数据,使数据预测成为可能。比如在杭州进行人脸识别出现误识别,本人有可能实际上正在北京出差或休假等。所以,如果结合数据算法模型来准确的预测用户行为,对人群进行合理区分的话,就能一定程度解决误识别。

基于此,团队成员在误识别上进行的第一个优化就是——分组优化。通过特征细分人群,降低误识,提高通过率。

分组优化首先需要考虑时间与空间因素。如果把一个区域空间圈得越小,未来一定时间内出现在该特定区域内的人也会越少。同时,时效越强,在该区域该时段出现的人脸也会越少。

同时,结合实际应用场景,通过业务规则与特点的判断,以及人脸识别算法的性能特性,就能更好确认合理的空间、时间以及人数的分组规模情况。

以阿里巴巴园区人脸识别取件的分组优化为例。从地域属性上来看,每个小邮局都是一个固定的空间单元,有具体的位置。从时效性来看,当包裹到达小邮局后,它的主人在一段时间内会去拿包裹。从业务属性上来看,小邮局是收取包裹快递的地方。通过这三点属性,就能基本确定取件场景的分组优化方案。判断哪些员工会去哪个小邮局的分组中。

此外,取件还会存在代领情况。这一情况在业务规则中就没法确认,需要基于历史行为去分析,一个包裹被别人代领的可能性是多少,以及被谁代领的可能性更高。然后将这一预判结果加入到人脸识别的分组中。

20190723002035.gif

阿里园区小邮局通过人脸取件

通过一系列的算法模型学习优化,提升模型预测的准确性,不断的改善人员分组质量,目前人脸在支持阿里巴巴园区通行上,误识率已经有效控制在千分之一左右。

除了分组优化外,在面对不同肤色与人种的情况下,团队还建立了不同种类的算法模型与底库。这样可以针对特定肤色人种的通行率和误识率,做针对性的优化。

人员底库照片的优化

少昊表示,很多时候,人脸识别不成功并不是现场摄像头或比对算法出了问题,还是底库照片的质量太差,导致无法进行人脸识别。除了让对方重新提供照片图像外,还可以通过算法进行大小脸检测、照片校正以及身份核实,来确认本人身份。

此外,算法还可以帮助底库照片进行自学习。通过人员照片序列的分析后,提取特征进行图片聚类分析,随后再通过图片质量分析后,对本人身份进行核实,进而完成底库照片的注册与特征提取。

通过上述手段优化,在人脸识别通过率保持不变的情况下,误识率可以降到1‰。

去年双11期间,阿里园区的这套人脸识别技术还应用于双11作战指挥室与天猫双11晚会现场的安防保障。

少昊表示,通过人脸属性识别的进一步丰富,硬件及算法能力的进一步提升,未来,人脸识别技术将会满足更多商业场景需求,一个真正的刷脸时代就要来了。

互动时刻

20190723002223.jpg

你最希望未来人脸识别应用在什么场景?
欢迎在下方留言告诉我们
我们将从留言的朋友中随机选出两位送出
定制限量版徽章礼盒一套

相关文章
ECS新旧实例数据及网络无缝迁移实操
一、背景 之前由于因为有业务变迁不得不更换实例,但是数据和网络需要做到同步,面对这样的需求,我们也是绞尽脑汁,仔细专研了阿里云的产品文档,最后解决了这个问题,这边整理一下实际操作过程,把踩过的坑记录一下。
3657 0
|
11月前
|
数据采集 人工智能 数据管理
CDGA|信息差不再是障碍:数据治理新策略
在信息爆炸时代,数据成为企业宝贵资产,但数据量激增和来源多样化导致的信息差成为企业发展的障碍。为此,新的数据治理策略应运而生,通过构建统一的数据管理平台、强化数据治理体系、推动数据文化建设、利用AI与大数据技术优化治理,并注重合规性和隐私保护,确保数据质量、安全性和可访问性,消除信息差,提升企业竞争力和创新能力。
|
11月前
|
Web App开发 JavaScript API
开发webrtc第一步
这篇文章介绍了如何使用WebRTC技术在网页上实现摄像头和麦克风的调用,并将实时视频流显示在HTML的video标签中。
164 2
开发webrtc第一步
|
11月前
|
域名解析 网络协议 关系型数据库
网站打不开数据库错误等常见问题解决方法合集
网站打不开数据库错误等常见问题解决方法合集
|
存储 机器学习/深度学习 缓存
LLM 加速技巧:Muti Query Attention
MQA 是 19 年提出的一种新的 Attention 机制,其能够在保证模型效果的同时加快 decoder 生成 token 的速度。在大语言模型时代被广泛使用,很多LLM都采用了MQA,如Falcon、PaLM、StarCoder等。
311 0
|
人工智能 图形学 计算机视觉
PS2023绿色版永久版注册机photoshop 2023
adobe photoshop2023,该版本采用了最新的设计开发引擎(Mercury Graphics Engine),和最新的内容视频技术,在帮助用户精准的完成图片制作与编辑的同时,2023PS还为用户提供了一些新的选择工具和新的软件界面UI。
1703 1
阿里云短信群发平台收费标准每条价格及套餐包报价
阿里云短信群发平台收费标准每条价格及套餐包报价,阿里云短信服务价格表,阿里云短信0.032元一条,阿里云短信价格?阿里云短信怎么收费?阿里云短信多少钱一条,阿里云短信价格0.032元一条
1809 0
|
存储 分布式计算 数据挖掘
MaxCompute 物化视图智能推荐最佳实践
本文主要介绍什么是五话题以及MaxCompute 发布的“物化视图智能推荐”具体内容。
13158 0
|
存储 负载均衡 安全
阿里云定制建站产品:云企业官网标准版,高级版,尊贵版功能对比及选择参考
云·企业官网是阿里云专为需要建站的用户推出的定制内建站类产品,按不同功能配置提供了标准版,高级版,尊贵版三个不同的版本。不同于模板建站,云·企业官网建站产品是有专人一对一提供服务的,根据用户需求指导设计网站风格和功能,可满足个人或企业建站的不同需求。
530 0
阿里云定制建站产品:云企业官网标准版,高级版,尊贵版功能对比及选择参考