基于Docker的TensorFlow机器学习框架搭建和实例源码解读-阿里云开发者社区

开发者社区> 王小雷> 正文

基于Docker的TensorFlow机器学习框架搭建和实例源码解读

简介: 概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的机器学习开发环境,探索人工智能的奥秘,容器随开随用方便快捷。源码解析TensorFlow容器创建和示例程序运行,为热爱机器学者降低学习难度。 默认机器已经装好了Docker(D
+关注继续查看

概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的机器学习开发环境,探索人工智能的奥秘,容器随开随用方便快捷。源码解析TensorFlow容器创建和示例程序运行,为热爱机器学者降低学习难度。

默认机器已经装好了Docker(Docker安装和使用可以看我另一篇博文:Ubuntu16.04安装Docker1.12+开发实例+hello world+web应用容器)。

这里写图片描述

1.下载TensorFlow镜像

docker pull tensorflow/tensorflow
#或者
#sudo docker pull tensorflow/tensorflow

2.创建TensorFlow容器,源码解读

docker run --name xiaolei-tensortflow -it -p 8888:8888 -v ~/tensorflow:/notebooks/data  tensorflow/tensorflow
  • docker run运行镜像,
  • --name为容器创建别名,
  • -it保留命令行运行,
  • -p 8888:8888将本地的8888端口http://localhost:8888/映射,
  • -v ~/tensorflow:/notebooks/data 将本地的~/tensorflow文件夹挂载到新建容器的/notebooks/data下(这样创建的文件可以保存到本地~/tensorflow)
  • tensorflow/tensorflow为指定的镜像,默认标签为latest(即tensorflow/tensorflow:latest)

这里写图片描述

3.开启TensorFlow容器

3.1.可以直接从命令行中右键打开连接,或者在浏览器中输入localhost:8888,然后将命令行中的token粘贴上去。

这里写图片描述

4.开始TensorFlow编程(Python语言)

4.1.在首页可以New一个Python项目

这里写图片描述

4.2.tensorflow示例源码解读

from __future__ import print_function
#导入tensorflow
import tensorflow as tf
#输入两个数组,input1和input2然后相加,输出结果
with tf.Session():
    input1 = tf.constant([1.0, 1.0, 1.0, 1.0])
    input2 = tf.constant([2.0, 2.0, 2.0, 2.0])
    output = tf.add(input1, input2)
    result = output.eval()
    print("result: ", result)

4.3.运行程序,输出的结果为(运行成功)

result:  [ 3.  3.  3.  3.]

这里写图片描述

5.其他 linux,TensorFlow,Docker相关操作

5.1.关闭TensorFlow和开启TensorFlow环境

#关闭tensorflow容器
docker stop xiaolei-tensortflow

#开启TensorFlow容器
docker start xiaolei-tensortflow
#浏览器中输入 http://localhost:8888/

5.2.解决文件的读写权限

#查看读写权限
ls -l
#将tensorflow 变为属于xiaolei(系统默认)用户
sudo chown -R xiaolei tensorflow/
#将tensorflow 变为属于xiaolei(系统默认)用户组
sudo chgrp -R xiaolei tensorflow/

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
tomcat源码编译和环境搭建
关于tomcat源码的编译和环境搭建自己也是拖了一段时间,今天还是硬着头皮来做一做,还是有所收获。 tomcat源码的编译还是首选ant,作为apache的顶级项目ant,可以参见下面的链接进行下载,下载一个二进制运行包即可。
1066 0
直播源码怎样搭建直播系统LNMP环境——PHP配置
前面两篇内容我们聊过了直播平台搭建前需要准备的内容,一切准备就绪之后就要进入正式的搭建部署环节了,本篇就先简单介绍下LNMP环境下的PHP配置。
2665 0
看深度学习框架排名第一的TensorFlow如何进行时序预测!
2017年深度学习框架关注度排名tensorflow以绝对的优势占领榜首,本文通过一个小例子介绍了TensorFlow在时序预测上的应用。
1512 0
将dubbo框架里的服务提供者迁移进k8s里,以docker提供服务时要注意的细节
在将dubbo框架里的服务提供者迁移进k8s时,有几个注意事项: 1, 要为默认情况下,dubbo会将k8s里的pod ip地址作为注册服务的地址,所以这个地址需要被改写(ip测试过,行得通,而dns待测试)。
2160 0
阿里深度学习框架开源了!无缝对接TensorFlow、PyTorch
阿里巴巴将于12月开源其内部深度学习框架 X-DeepLearning,面向广告、推荐、搜索等高维稀疏数据场景,以填补TensorFlow、PyTorch等现有开源深度学习框架主要面向图像、语音等低维稠密数据的不足。
2609 0
基于Spark的机器学习实践 (三) - 实战环境搭建
0 相关源码 1 Spark环境安装 ◆ Spark 由scala语言编写,提供多种语言接口,需要JVM ◆ 官方为我们提供了Spark 编译好的版本,可以不必进行手动编译 ◆ Spark安装不难,配置需要注意,并且不一定需要Hadoop环境 下载 解压 tar zxvf spark-2.
1045 0
+关注
王小雷
专注大数据,人工智能的多面手,对新兴的技术与知识充满了好奇与渴望!
128
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《Nacos架构&原理》
立即下载
《看见新力量:二》电子书
立即下载
云上自动化运维(CloudOps)白皮书
立即下载