【Spark Summit East 2017】可扩展性机器学习的特征哈希

简介: 本讲义出自Nick Pentreath在Spark Summit East 2017上的演讲,主要介绍了特征哈希是用于处理高维特性的一个功能强大的机器学习技术,特征哈希快速、简单、并且节约内存,而且适合在线学习场景,演讲中分享了特征哈希的基本功能,以及如何使用特征哈希在机器学习中的所有功能类型,并介绍了一个在Spark ML管道中使用的更加灵活和强大的转化器。

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps


本讲义出自Nick Pentreath在Spark Summit East 2017上的演讲,主要介绍了特征哈希是用于处理高维特性的一个功能强大的机器学习技术,特征哈希快速、简单、并且节约内存,而且适合在线学习场景,演讲中分享了特征哈希的基本功能,以及如何使用特征哈希在机器学习中的所有功能类型,并介绍了一个在Spark ML管道中使用的更加灵活和强大的转化器。


4c47a30bf53e244879410367dba7d4b96d26fd38

51006ed9f0ac8634c6e3be6f44f7c72949660e07

ffe21491b8b056d767bd293cc643a46c67a556a2

97279c7133e157bc1f8adc78554329f1cfd09f07

6c8950498f42c1187d0d3a482462349139763433

c5a961681d45a23099dc3a1a5e3c9b878c1bb83a

e89e7093c9c47cb7762cc2042d12cb53e1b5281d

e8426653aef15bd7c22e9419ef7f7f9d78db5dc8

a6b92b8992da05e816cc6c7e6ce3443aa8f57a15

2c71163d12c37cf889c7631f613e67d466b4bbb9

a1e095ff3920f6e014b631967d6a00c154c1ed1c

8db43c12c24130e6bb7e317eee1be4e38acc9056

48baed7bfdd213ec8983cce4f920fe720efa952f

2f14c073dfdf52ed1c1ebcc20508cedb96e923b4

1224bb58376be4c888ba41f2fdc8610b643d7283

44714fa98d68e2671e7123d2ec3c577ae2356d83

0dc6394383173166c1e24b78cd99de9caf4e82c6

62d8065ae3375d60457c589b618463ba691629ff

04721b3d39f589cba870a87e1cf817fb047e2bd1

590f9b39a107f37369cccdc73ca964670ccb03a8

49972e3ea839e590e148ce4e58b1c375eac1b93a

3fbe2e2c7e10d93a3c8b2c6c16e4061ee8bc79d7

f6c87d1dba6a72854c6a4ee652db0a3a6a555a12

f319399092b770f89e5bdeaf1213765ce2b9baf7

07a7a8072f99721c14daa9271c4fcd3f85aa4d9d

0f30ee6efd8321d185ef7823dc48910590c9df44

743438124ba496e1fbce225141fd39ae5b862529

20c6567136cbc53c7f074f7ce420894055fbabdc

8c890ee147d69d77b1463ad1b2352101b5bdd582

33c7256b4047c6ddd70ee2fed5c1ed7af7f41efb

9d8e091b8fc636e352245d296c3df0f00b277f02



相关文章
|
4月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
426 3
|
7月前
|
机器学习/深度学习 人工智能 JSON
人工智能平台PAI产品使用合集之创建特征视图时遇到报错,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 存储 人工智能
人工智能平台PAI产品使用合集之选择使用Hologres作为在线特征存储,响应延时大概在多久
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 数据采集 存储
人工智能平台PAI产品使用合集之FeatureStore是否支持推荐场景下的session特征
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 人工智能 前端开发
人工智能平台PAI产品使用合集之创建了实时特征视图,里面的数据是通过什么传入的
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
存储 机器学习/深度学习 人工智能
人工智能平台PAI使用问题之特征平台是否可以与Java进行对接
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 算法 C++
机器学习归一化特征编码(二)
这篇文档讨论了机器学习中的特征编码,特别是独热编码(OneHotEncoder)在处理离散变量时的作用。它指出,对于多分类变量,独热编码是常用方法,但对二分类变量通常不需要。在Python的`sklearn`库中,`OneHotEncoder`可以用来实现这一过程,并可以通过设置`drop='if_binary'`来忽略二分类变量。文档还提到了逻辑回归,解释了正则化参数`C`和`penalty`,并列举了不同的优化算法,如`liblinear`、`lbfgs`等。
|
7月前
|
机器学习/深度学习 算法 数据处理
机器学习归一化特征编码(一)
特征缩放是机器学习预处理的关键步骤,它包括归一化和标准化。归一化通过最大最小值缩放,将数据转换到[0,1]区间,有助于梯度下降算法更快收敛,减少数值较大特征的影响。标准化则通过减去均值并除以标准差,确保数据具有零均值和单位方差,适用于关注数据分布情况的算法。例如,欧氏距离计算时,未归一化的特征可能导致模型偏向数值较大的特征。归一化能提升模型精度,尤其是当距离度量如欧式距离时。常见的实现方法有`MinMaxScaler`,它将每个特征值缩放到用户指定的范围,如[0,1]。而`StandardScaler`执行Z-Score标准化,数据分布符合标准正态分布。
|
6月前
|
机器学习/深度学习 数据采集 存储
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
|
7月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
48 0