人工智能平台PAI使用问题之特征平台是否可以与Java进行对接

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:PAI这个活动一共有多少期?会一直搞下去吗?

PAI这个活动一共有多少期?会一直搞下去吗?



参考答案:

AI活动很多的,关注群内公告,我们有活动都会群同步。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587051



问题二:PAI上传大文件怎么传啊?直接拖太慢了。

PAI上传大文件怎么传啊?直接拖太慢了。



参考答案:

如果你觉得直接拖动上传大文件太慢,可以考虑以下几种方法:

1.使用传输工具:可以考虑使用如QQ、微信、云盘等工具进行大文件传输。这些工具通常都有大文件传输的功能,而且速度较快。

2.分片上传:如果你需要上传的文件非常大,可以考虑将其分成多个小文件进行上传。这样可以大大提高上传的速度。

3.压缩文件:在上传大文件之前,可以先将文件进行压缩,然后再上传。这样可以在一定程度上减少上传时间。

4.使用FTP(文件传输协议):如果你可以访问到目标服务器,可以考虑使用FTP来进行大文件上传。FTP通常比直接拖动更快。

5.优化网络环境:确保你的网络环境良好,网络速度足够快,这样可以提高上传速度。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587050



问题三:PAI featurestore-java-sdk ,已经支持实时特征和序列特征了吧?

PAI featurestore-java-sdk ,已经支持实时特征和序列特征了吧?



参考答案:

PAI featurestore-java-sdk是一个用于处理和存储机器学习特征的平台,具体来说,它支持实时特征和序列特征的存储和管理。实时特征通常指的是在短时间内发生并可以被快速捕获和处理的特征,而序列特征则是指具有时间顺序或顺序关系的特征。

在PAI featurestore-java-sdk中,这两种类型的特征都可以被有效地组织、存储和管理,以便于机器学习模型的训练和使用。通过使用该sdk,开发人员可以方便地创建、更新和查询特征数据,从而为各种机器学习应用提供稳定、高效和可扩展的特征服务。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587048



问题四:PAI这个特征平台可以对接java嘛?

PAI这个特征平台可以对接java嘛?



参考答案:

可以。 有 java SDK https://github.com/aliyun/aliyun-pai-featurestore-java-sdk

更详细的资料也可以看一下。

https://help.aliyun.com/zh/pai/user-guide/featurestore-overview?spm=a2c4g.11186623.0.0.7bc07747bdk9CZ

https://pai.console.aliyun.com/?regionId=cn-hangzhou&spm=a2c4g.11186623.0.0.7bc07747bdk9CZ&workspaceId=85700#/dsw-gallery/preview/solution/feature_store_py



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587047



问题五:PAI试用中心这里有额度可以申请,是不是申请了就不用收费了?

PAI试用中心这里有额度可以申请,是不是申请了就不用收费了?



参考答案:

FeatureStore应该要用到max compute 和一个在线存储,比如hologres 或者TableStore



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587046

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
15天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
18天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
2月前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
58 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
17天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####

相关产品

  • 人工智能平台 PAI