2018-04-21 搭建Python官方文档翻译环境

简介: 为翻译Python官方文档的示例代码中的标识符, 搭建翻译环境 Setup translation environment in order to translate the identifiers in the sample programes in official Python tutorials.

参考PEP 545 -- Python Documentation Translations

fork的编译脚本: nobodxbodon/docsbuild-scripts, 添加了zh语言标签, 以及fork的PO文件库nobodxbodon/python-docs-ko, 仅作演示用(更改字段"测试python入门教程": Update index.po · nobodxbodon/python-docs-ko@00b8073)
2018_04_21_python_

据非常有限的理解, 大概过程是, PO文件包含了所有翻译的段落, 像打补丁似地附加到原英文文档后生成rEst格式文件, 再编译成HTML文档(html库地址:nobodxbodon/py36zh. 演示: 4. 기타 제어 흐름 도구 - Python 3.6.5 文档)

接下去要解决的是, 如何汉化程序部分, 效果如下. 所有现有的其他语言的翻译文档都没有对程序进行本地化(字符串/命名等)
2018_04_21_python_

现在可以通过直接修改rst文件, 但PEP 545的流程是修改PO文件. 问了其他翻译组的作者, 似乎需要修改Sphinx配置才能实现(在PO文件中添加程序部分, 并且在构建时合并入rst文件).

另:

Python官方文档(入门教程只是一小部分)日语翻译进度86+%, 法语30%, 中文1.5%: The Python 3.6 translation project on Transifex. 后得知早先有老版本3.2.2的中文翻译项目: https://docspy3zh.readthedocs.io/en/latest/ 不知是否是这1.5%的前身.

相关文章
|
4月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
523 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
27天前
|
Shell Linux Ruby
Python3虚拟环境venv
`venv` 是 Python 的虚拟环境工具,用于为不同项目创建独立的运行环境,避免依赖冲突。通过 `python3 -m venv` 命令创建虚拟环境,并使用 `source bin/activate` 激活。激活后,所有 Python 包将安装在该环境中,不影响系统全局环境。退出环境使用 `deactivate` 命令。每个虚拟环境拥有独立的包集合,确保项目间的隔离性。删除虚拟环境只需删除其目录即可。
86 34
|
1月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
53 1
|
1月前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
110 2
|
1月前
|
Python
探索Python虚拟环境:virtualenv、venv与pipenv比较
在Python开发中,有效的环境管理至关重要。virtualenv、venv和pipenv是常用的虚拟环境管理工具。virtualenv支持Python 2.7+和3.3+,可创建独立环境;venv为Python 3.3+内置库,简单轻量但功能有限;pipenv则结合了包管理和虚拟环境管理,生成Pipfile.lock确保依赖确定性和安全性,推荐作为首选工具。
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
323 2
|
3月前
|
机器学习/深度学习 数据可视化 Docker
Python环境
Python环境
59 3
|
3月前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
214 3
|
4月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
744 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。

热门文章

最新文章

推荐镜像

更多