Python中与selenium齐名的pyppeteer库

简介: 如果说在Python中还有一款自动化工具能和selenium媲美,那么无疑是pyppeteer,pyppeteer是puppeteer的Python版本,puppeteer是Google开源的一个js库,通过一系列高级接口和Chrome或Chromium在DevTools协议下交互,其实现功能如下:生成页面的截图和PDF。

如果说在Python中还有一款自动化工具能和selenium媲美,那么无疑是pyppeteer,pyppeteer是puppeteer的Python版本,puppeteer是Google开源的一个js库,通过一系列高级接口和Chrome或Chromium在DevTools协议下交互,其实现功能如下:

  • 生成页面的截图和PDF。
  • 抓取SPA(单页应用程序)并渲染页面
  • 自动提交表单,UI测试,键盘输入等。
  • 创建一个最新的自动化测试环境,使用最新的JavaScript和浏览器特性,在最新版本的Chrome中直接运行测试。
  • 捕捉异常跟踪堆栈来帮助诊断性能问题。
  • 测试Chrome扩展
  • 当然还有些高级功能如js注入、模拟操作、异步执行、伪装
image

pyperteer是puppeteer的Python实现,相比于selenium具有异步加载、速度快、具备有界面/无界面模式、伪装性更强不易被识别为机器人同时可以伪装手机平板等终端;但是也有一些缺点,如接口不易理解、语义晦涩;

但在selenium被广泛和谐的今天,pyppeteer无疑为防爬墙撕开了一道大口子,针对selenium的淘宝、美团、文书网等网站,目前可通过该库使用selenium的思路继续突破,毫不费劲,以前不能用selenium的现在可以使用pyppeteer轻易拿下,后面将针对pyppeteer进行系列教程的分享,关注公众号【Python之战】不迷路。

pyppeteer基础使用:

使用pyppeteer先看看异步库asyncio,因为asycio也是pyppeteer框架的一部分,不熟悉的看这篇《学Python不得不掌握的库,gevent和asyncio使用方法详解

先看官方提供的一个案例:

import asyncio
from pyppeteer import launch

async def main():
    browser = await launch()
    page = await browser.newPage()
    await page.goto('http://example.com')
    await page.screenshot({'path': 'example.png'})
    await browser.close()

asyncio.get_event_loop().run_until_complete(main())

其中async关键字声明一个异步操作,await关键字声明一个耗时操作,asyncio.get_event_loop().run_until_complete(main())是创建异步池并执行异步模块main函数。

browser = await launch()

创建一个浏览器对象类似selenium中的driver,launch()中可传入带关键字的字典配置参数

page = await browser.newPage()

新建一个页面对象,页面操作在页面对象上

await page.goto('http://example.com')

执行跳转功能等同于driver.get()

await page.screenshot({'path': 'example.png'})

页面截图

await browser.close()

关闭浏览器对象

关于launch()中的配置参数:

在运行launch()时没有下载Chromium会自动下载。

[W:pyppeteer.chromium_downloader] start chromium download.
Download may take a few minutes.

  4%|▍         | 5365760/127496521 [00:15<08:18, 244829.50it/s]

其中browser = await launch(),中options是字典,配置如:browser = await launch({‘headless’:True})是配置无头模式,其余常用配置字段如下:

async def launch(options: dict = None, **kwargs: Any) -> Browser:
*`` ignorehttpserrrors``(bool):是否忽略HTTPS错误。默认为‘假’。

*`` headless``(bool):是否在headless模式下运行浏览器。默认为

`` true``除非``appmode````devtools``选项为``true``。

*``可执行路径``(str):要运行的chromium或chrome可执行文件的路径

而不是默认的铬束。

*`` slowmo``(int float):通过指定的毫秒数。

*`` args``(list[str]):要传递给浏览器的附加参数(标志)过程。

*`` ignoredefaultargs``(bool):不要使用Pypeter的默认参数。这个是危险的选择;小心使用。

*`` handlesigint``(bool):在ctrl+c上关闭浏览器进程。默认为‘真’。

*`` handlesigterm``(bool):关闭sigterm上的浏览器进程。默认值“真”。

*`` handlesighup``(bool):关闭浏览器进程。默认为‘真’。

*`` dumpio``(bool):是否通过管道传输浏览器进程stdout和stderr到``process.stdout````process.stderr```。默认为“假”。

*`` userdatadir``(str):用户数据目录的路径。

*`` env``(dict):指定将对浏览器。默认为与python进程相同。

*`` devtools``(bool):是否为每个选项卡自动打开devtools面板。如果此选项为“真”,将设置“无头”选项‘假’。

*`` log level``(int str):打印日志的日志级别。默认与根记录器。

*`` autoclose``(bool):脚本时自动关闭浏览器进程完整的。默认为“真”。

*``循环`(asyncio.abstractEventLoop):事件循环(**experimental**)。

*`` appmode``(bool):已弃用。

Page页面对象元素主要选择器如下

    async def querySelector(self, selector: str) -> Optional[ElementHandle]:
        """Get an Element which matches ``selector``.

    async def queryObjects(self, prototypeHandle: JSHandle) -> JSHandle:
        """Iterate js heap and finds all the objects with the handle.

    async def querySelectorEval(self, selector: str, pageFunction: str,
                                *args: Any) -> Any:
        """Execute function with an element which matches ``selector``.

    async def querySelectorAllEval(self, selector: str, pageFunction: str,
                                   *args: Any) -> Any:
        """Execute function with all elements which matches ``selector``.

    async def querySelectorAll(self, selector: str) -> List[ElementHandle]:
        """Get all element which matches ``selector`` as a list.

    async def xpath(self, expression: str) -> List[ElementHandle]:
        """Evaluate the XPath expression.

        If there are no such elements in this page, return an empty list.

主要是XPath、querySelector、querySelectorAll三个。

后面将持续对pyppeteer库进行系统性的分享,喜欢的欢迎关注不迷路。

相关文章
|
22天前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
224 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
15天前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
66 0
|
3月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
3月前
|
Web App开发 存储 前端开发
Python+Selenium自动化爬取携程动态加载游记
Python+Selenium自动化爬取携程动态加载游记
|
21天前
|
SQL 测试技术 数据库
healenium+python+selenium
上次介绍了如何利用healenium+java+selenium来实现selenium的自愈,这次介绍如何healenium+python+selenium。关于healenium+python+selenium网上资料更少,并且甚至是错误的。在著名的书籍《软件测试权威指南中》也是有一定问题的。现在介绍如下
76 4
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
118 18
|
3月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
314 51
|
2月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
181 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
2月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
253 0
|
5月前
|
数据采集 Web App开发 JavaScript
基于Selenium的Python爬虫抓取动态App图片
基于Selenium的Python爬虫抓取动态App图片
348 68

热门文章

最新文章

推荐镜像

更多