Python中与selenium齐名的pyppeteer库

简介: 如果说在Python中还有一款自动化工具能和selenium媲美,那么无疑是pyppeteer,pyppeteer是puppeteer的Python版本,puppeteer是Google开源的一个js库,通过一系列高级接口和Chrome或Chromium在DevTools协议下交互,其实现功能如下:生成页面的截图和PDF。

如果说在Python中还有一款自动化工具能和selenium媲美,那么无疑是pyppeteer,pyppeteer是puppeteer的Python版本,puppeteer是Google开源的一个js库,通过一系列高级接口和Chrome或Chromium在DevTools协议下交互,其实现功能如下:

  • 生成页面的截图和PDF。
  • 抓取SPA(单页应用程序)并渲染页面
  • 自动提交表单,UI测试,键盘输入等。
  • 创建一个最新的自动化测试环境,使用最新的JavaScript和浏览器特性,在最新版本的Chrome中直接运行测试。
  • 捕捉异常跟踪堆栈来帮助诊断性能问题。
  • 测试Chrome扩展
  • 当然还有些高级功能如js注入、模拟操作、异步执行、伪装
webp
image

pyperteer是puppeteer的Python实现,相比于selenium具有异步加载、速度快、具备有界面/无界面模式、伪装性更强不易被识别为机器人同时可以伪装手机平板等终端;但是也有一些缺点,如接口不易理解、语义晦涩;

但在selenium被广泛和谐的今天,pyppeteer无疑为防爬墙撕开了一道大口子,针对selenium的淘宝、美团、文书网等网站,目前可通过该库使用selenium的思路继续突破,毫不费劲,以前不能用selenium的现在可以使用pyppeteer轻易拿下,后面将针对pyppeteer进行系列教程的分享,关注公众号【Python之战】不迷路。

pyppeteer基础使用:

使用pyppeteer先看看异步库asyncio,因为asycio也是pyppeteer框架的一部分,不熟悉的看这篇《学Python不得不掌握的库,gevent和asyncio使用方法详解

先看官方提供的一个案例:

import asyncio
from pyppeteer import launch

async def main():
    browser = await launch()
    page = await browser.newPage()
    await page.goto('http://example.com')
    await page.screenshot({'path': 'example.png'})
    await browser.close()

asyncio.get_event_loop().run_until_complete(main())

其中async关键字声明一个异步操作,await关键字声明一个耗时操作,asyncio.get_event_loop().run_until_complete(main())是创建异步池并执行异步模块main函数。

browser = await launch()

创建一个浏览器对象类似selenium中的driver,launch()中可传入带关键字的字典配置参数

page = await browser.newPage()

新建一个页面对象,页面操作在页面对象上

await page.goto('http://example.com')

执行跳转功能等同于driver.get()

await page.screenshot({'path': 'example.png'})

页面截图

await browser.close()

关闭浏览器对象

关于launch()中的配置参数:

在运行launch()时没有下载Chromium会自动下载。

[W:pyppeteer.chromium_downloader] start chromium download.
Download may take a few minutes.

  4%|▍         | 5365760/127496521 [00:15<08:18, 244829.50it/s]

其中browser = await launch(),中options是字典,配置如:browser = await launch({‘headless’:True})是配置无头模式,其余常用配置字段如下:

async def launch(options: dict = None, **kwargs: Any) -> Browser:
*`` ignorehttpserrrors``(bool):是否忽略HTTPS错误。默认为‘假’。

*`` headless``(bool):是否在headless模式下运行浏览器。默认为

`` true``除非``appmode````devtools``选项为``true``。

*``可执行路径``(str):要运行的chromium或chrome可执行文件的路径

而不是默认的铬束。

*`` slowmo``(int float):通过指定的毫秒数。

*`` args``(list[str]):要传递给浏览器的附加参数(标志)过程。

*`` ignoredefaultargs``(bool):不要使用Pypeter的默认参数。这个是危险的选择;小心使用。

*`` handlesigint``(bool):在ctrl+c上关闭浏览器进程。默认为‘真’。

*`` handlesigterm``(bool):关闭sigterm上的浏览器进程。默认值“真”。

*`` handlesighup``(bool):关闭浏览器进程。默认为‘真’。

*`` dumpio``(bool):是否通过管道传输浏览器进程stdout和stderr到``process.stdout````process.stderr```。默认为“假”。

*`` userdatadir``(str):用户数据目录的路径。

*`` env``(dict):指定将对浏览器。默认为与python进程相同。

*`` devtools``(bool):是否为每个选项卡自动打开devtools面板。如果此选项为“真”,将设置“无头”选项‘假’。

*`` log level``(int str):打印日志的日志级别。默认与根记录器。

*`` autoclose``(bool):脚本时自动关闭浏览器进程完整的。默认为“真”。

*``循环`(asyncio.abstractEventLoop):事件循环(**experimental**)。

*`` appmode``(bool):已弃用。

Page页面对象元素主要选择器如下

    async def querySelector(self, selector: str) -> Optional[ElementHandle]:
        """Get an Element which matches ``selector``.

    async def queryObjects(self, prototypeHandle: JSHandle) -> JSHandle:
        """Iterate js heap and finds all the objects with the handle.

    async def querySelectorEval(self, selector: str, pageFunction: str,
                                *args: Any) -> Any:
        """Execute function with an element which matches ``selector``.

    async def querySelectorAllEval(self, selector: str, pageFunction: str,
                                   *args: Any) -> Any:
        """Execute function with all elements which matches ``selector``.

    async def querySelectorAll(self, selector: str) -> List[ElementHandle]:
        """Get all element which matches ``selector`` as a list.

    async def xpath(self, expression: str) -> List[ElementHandle]:
        """Evaluate the XPath expression.

        If there are no such elements in this page, return an empty list.

主要是XPath、querySelector、querySelectorAll三个。

后面将持续对pyppeteer库进行系统性的分享,喜欢的欢迎关注不迷路。

相关文章
|
16小时前
|
数据可视化 数据挖掘 Python
Python数据可视化库Matplotlib应用实践
【2月更文挑战第10天】 在数据分析和可视化领域,Python语言的Matplotlib库无疑是一把强大的利器。本文将介绍Matplotlib库的基本用法以及在数据可视化中的应用实践,通过示例代码演示如何利用Matplotlib库创建各种类型的图表,帮助读者更好地理解和运用这一强大工具。
4 0
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
Python冷知识:如何找出新版本增加或删除了哪些标准库?
Python冷知识:如何找出新版本增加或删除了哪些标准库?
9 0
|
2天前
|
存储 编解码 算法
MoviePy,一个超强的Python库
MoviePy,一个超强的Python库
|
2天前
|
Python
patchworklib,一款极其强大的 Python 库!
patchworklib,一款极其强大的 Python 库!
|
2天前
|
存储 数据库 计算机视觉
Python图像处理库:学会Pillow再也不用PS啦
Python图像处理库:学会Pillow再也不用PS啦
|
2天前
|
机器学习/深度学习 数据采集 自然语言处理
Python编程的十大神奇依赖库
Python编程的十大神奇依赖库
|
3天前
|
存储 数据可视化 数据挖掘
Python在数据分析中的利器:Pandas库全面解析
【2月更文挑战第7天】 众所周知,Python作为一种简洁、易学且功能强大的编程语言,被广泛运用于数据科学和人工智能领域。而Pandas库作为Python中最受欢迎的数据处理库之一,在数据分析中扮演着举足轻重的角色。本文将全面解析Pandas库的基本功能、高级应用以及实际案例,带您深入了解这个在数据分析领域的利器。
14 1
|
4天前
|
存储 JSON 安全
Pydantic:强大的Python 数据验证库
Pydantic:强大的Python 数据验证库
12 0
|
4天前
|
数据采集 Web App开发 前端开发
Python爬虫之自动化测试Selenium#7
Selenium基本使用、查找结点、节点交互、动作链、获取节点信息、延时等待、前进后退、Cookies、选项卡管理、异常处理【2月更文挑战第26天】
27 1
Python爬虫之自动化测试Selenium#7
|
4天前
|
数据采集 数据挖掘 数据处理
Python中的数据处理利器 - Pandas库详解
Pandas是Python中一款强大的数据处理工具,提供了丰富的数据结构和函数,能够高效地进行数据清洗、转换和分析。本文将深入探讨Pandas库的核心功能和应用,帮助读者更好地理解和利用这一工具。

热门文章

最新文章