分布式队列Celery入门

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Celery 是一个简单、灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具。它是一个专注于实时处理的任务队列,同时也支持任务调度。Celery 是语言无关的,虽然它是用 Python 实现的,但他提供了其他常见语言的接口支持。

Celery 是一个简单、灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具。它是一个专注于实时处理的任务队列,同时也支持任务调度。Celery 是语言无关的,虽然它是用 Python 实现的,但他提供了其他常见语言的接口支持。

Celery 结构

网上找到一张用得最多的图

下面针对图中的每一部分做解释:
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。

消息中间件(broker)

一个消息传输的中间件。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,执行相应程序。也就是消费者和生产者之间的桥梁,
另外Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。

连接字符串:

RabiitMQ使用amqp://localhost
Redis使用redis://localhost

任务执行结果存储(backend)

backend: 用于存储这些消息以及celery执行的一些消息和结果,以此用来确认对方是否接受了。

任务执行单元(worker)

worker: Celery类的实例,作用就是执行各种任务

Celery 安装

目前,Windows使用celery只能安装 3.1.25版,linux就可以安装4.0以上的了,这里以Windows为例。

安装
pip install celery==3.1.25

先来一个简单例子
使用官网上的例子,然后把broker的信息改好,这里我们使用redis
首先在D:\CeleryDemo新建一个文件叫task.py输入以下代码。在输入之前确保redis服务是启动的。

from celery import Celery
app = Celery('tasks',  backend='redis://localhost:6379/0', broker='redis://localhost:6379/0') #配置好celery的backend和broker
@app.task  #普通函数装饰为 celery task
def add(x, y):
    return x + y

通过上面简单的代码broker 我们有了,backend 我们有了,task 我们也有了,现在就该运行 worker 进行工作了,在 task.py 所在目录下运行:

celery -A task worker --loglevel=info   

意思就是运行 task 这个任务集合的 worker 进行工作(当然此时broker中还没有任务,worker此时相当于待命状态)

最后一步,触发任务,最简单方式就是在task.py所在目录下写一个trigger.py调用被装饰成 task 的函数:

from task import add
import time
result = add.delay(4, 4) #不要直接 add(4, 4),这里需要用 celery 提供的接口 delay 进行调用
while not result.ready():
    time.sleep(1)
print ('task done: {0}'.format(result.get()))

运行之后可以看到

好了,恭喜你已经入门了。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
4月前
|
存储 SQL 分布式数据库
OceanBase 入门:分布式数据库的基础概念
【8月更文第31天】在当今的大数据时代,随着业务规模的不断扩大,传统的单机数据库已经难以满足高并发、大数据量的应用需求。分布式数据库应运而生,成为解决这一问题的有效方案之一。本文将介绍一款由阿里巴巴集团自主研发的分布式数据库——OceanBase,并通过一些基础概念和实际代码示例来帮助读者理解其工作原理。
419 0
|
2月前
|
消息中间件 关系型数据库 Java
‘分布式事务‘ 圣经:从入门到精通,架构师尼恩最新、最全详解 (50+图文4万字全面总结 )
本文 是 基于尼恩之前写的一篇 分布式事务的文章 升级而来 , 尼恩之前写的 分布式事务的文章, 在全网阅读量 100万次以上 , 被很多培训机构 作为 顶级教程。 此文修改了 老版本的 一个大bug , 大家不要再看老版本啦。
|
3月前
|
Dubbo Java 应用服务中间件
分布式-dubbo的入门
分布式-dubbo的入门
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
557 2
|
4月前
|
消息中间件 存储 NoSQL
MQ的顺序性保证:顺序队列、消息编号、分布式锁,一文全掌握!
【8月更文挑战第24天】消息队列(MQ)是分布式系统的关键组件,用于实现系统解耦、提升可扩展性和可用性。保证消息顺序性是其重要挑战之一。本文介绍三种常用策略:顺序队列、消息编号与分布式锁,通过示例展示如何确保消息按需排序。这些方法各有优势,可根据实际场景灵活选用。提供的Java示例有助于加深理解与实践应用。
135 2
|
6月前
|
存储 搜索推荐 Java
微服务SpringCloud ES分布式全文搜索引擎简介 下载安装及简单操作入门
微服务SpringCloud ES分布式全文搜索引擎简介 下载安装及简单操作入门
88 2
|
5月前
|
存储 监控 NoSQL
Celery是一个基于分布式消息传递的异步任务队列/作业队列
Celery是一个基于分布式消息传递的异步任务队列/作业队列
|
6月前
|
消息中间件 监控 调度
构建Python中的分布式系统结合Celery与RabbitMQ
在当今的软件开发中,构建高效的分布式系统是至关重要的。Python作为一种流行的编程语言,提供了许多工具和库来帮助开发人员构建分布式系统。其中,Celery和RabbitMQ是两个强大的工具,它们结合在一起可以为你的Python应用程序提供可靠的异步任务队列和消息传递机制。
|
5月前
|
设计模式 安全 NoSQL
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
74 0
|
7月前
|
消息中间件 存储 NoSQL
一文读懂python分布式任务队列-celery
# 一文读懂Python分布式任务队列-Celery Celery是一个分布式任务执行框架,支持大量并发任务。它采用生产者-消费者模型,由Broker、Worker和Backend组成。生产者提交任务到队列,Worker异步执行,结果存储在Backend。适用于异步任务、大规模实时任务和定时任务。5月更文挑战第17天
343 1

热门文章

最新文章