高并发分布式环境中获取全局唯一ID[分布式数据库全局唯一主键生成]

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 高并发分布式环境中获取全局唯一ID; 分布式数据库全局唯一主键生成

需求说明

在过去单机系统中,生成唯一ID比较简单,可以使用mysql的自增主键或者oracle中的sequence, 在现在的大型高并发分布式系统中,以上策略就会有问题了,因为不同的数据库会部署到不同的机器上,一般都是多主实例,而且再加上高并发的话,就会有重复ID的情况了。至于为什么会有重复就不多说了,技术人员都懂的。

本文讲述的案例不仅仅局限于数据库中的ID主键生产,也可以适用于其他分布式环境中的唯一标示,比如全局唯一事务ID,日志追踪时的唯一标示等。

先列出笔者最喜欢的一种全局唯一ID的生成方式,注意:没有完美的方案,只有适合自己的方案,还请读者根据具体的业务进行取舍,而且可以放到客户端进行ID 的生成,没有单点故障,性能也有一定保证,而且不需要独立的服务器。

全数字全局唯一标识(来自于mongodb)

其实现在有很多种生成策略,也各有优缺点,使用场景不同。这里说的是一种全数字的全局唯一ID,为什么我比较喜欢呢,首先它是全数字,保存和计算都比较简单(想一下MySQL数据库中对数字和字符串的处理效率),而且从这个ID中可以得到一些额外的信息,不想一些UUID、sha等字符串对我们几乎没有太大帮助。好了下面就说一下具体实现过程。

本算法来自于mongodb

ObjectId使用12字节的存储空间,每个字节存两位16进制数字,是一个24位的字符串。其生成方式如下:

12位生成规则:
[0,1,2,3] [4,5,6] [7,8] [9,10,11]
时间戳 |机器码 |PID |计数器

  1. 前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:
  • 时间戳与后边5个字节一块,保证秒级别的唯一性;
  • 保证插入顺序大致按时间排序;
  • 隐含了文档创建时间;
  • 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

上面牵扯到两个分布式系统中的概念:分布式系统中全局时钟同步很难,基本不可能实现,也没必要;时序一致性(顺序性)无法保证。这不属于本文范畴,感兴趣读者请自行搜索。

  1. 机器ID是服务器主机标识,通常是机器主机名的hash散列值。
  2. 同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。
  3. 前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

改为全数字

上面mongodb中保存的是16进制,如果不想用16进制的话,可以修改为10进制保存,只不过占用空间会大一些。

后面的计数器留几位,具体就看你们的业务量了,设计的时候要预留出以后的业务增长量。单进程内的计数器可以使用atomicInteger。

具体代码请参考我写的另一篇文章[Twitter的分布式自增ID算法snowflake(有改动Java版)]()http://blog.csdn.net/liubenlong007/article/details/74354713

UUID

  UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
  一般用16进制表示。
  算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
  从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
  优点:
  (1)本地生成ID,不需要进行远程调用,时延低
  (2)扩展性好,基本可以认为没有性能上限
  缺点:
  (1)无法保证趋势递增
  (2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)

注:以下这几种需要独立的服务器

来自Flicker的解决方案(依赖数据库)

因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。

  Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的:
  先创建单独的数据库(eg:ticket),然后创建一个表:
  
CREATE TABLE Tickets64 (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(1) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM
  当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

  +-------------------+------+
  | id                | stub |
  +-------------------+------+
  | 72157623227190423 | a    |
  +-------------------+------+
  在我们的应用端需要做下面这两个操作,在一个事务会话里提交:
REPLACEINTOTickets64 (stub)VALUES('a');
SELECTLAST_INSERT_ID();
  
  这样我们就能拿到不断增长且不重复的ID了。
  到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。
TicketServer1:
auto-increment-increment = 2
auto-increment-offset = 1
 
TicketServer2:
auto-increment-increment = 2
auto-increment-offset = 2
  最后,在客户端只需要通过轮询方式取ID就可以了。

  优点:充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。
  缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。在服务器变更的时候要修改步长,比较麻烦。
  

基于redis的分布式ID生成器

首先,要知道redis的EVAL,EVALSHA命令:
原理
利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。
生成的ID是64位的:

  • 使用41 bit来存放时间,精确到毫秒,可以使用41年。
  • 使用12 bit来存放逻辑分片ID,最大分片ID是4095
  • 使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID
    比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

    5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
    redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

    second, microSecond, partition, seq
    客户端要自己处理,生成最终ID。

    ((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
SQL 关系型数据库 MySQL
SQL命令行退出操作指南:轻松掌握不同数据库环境下的退出技巧
在数据库管理与开发过程中,经常需要通过SQL命令行工具(如MySQL的mysql客户端、PostgreSQL的psql、SQL Server的sqlcmd等)与数据库进行交互
273 59
|
21天前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
17天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
44 9
|
14天前
|
关系型数据库 MySQL Linux
Linux环境下MySQL数据库自动定时备份实践
数据库备份是确保数据安全的重要措施。在Linux环境下,实现MySQL数据库的自动定时备份可以通过多种方式完成。本文将介绍如何使用`cron`定时任务和`mysqldump`工具来实现MySQL数据库的每日自动备份。
36 3
|
14天前
|
监控 关系型数据库 MySQL
Linux环境下MySQL数据库自动定时备份策略
在Linux环境下,MySQL数据库的自动定时备份是确保数据安全和可靠性的重要措施。通过设置定时任务,我们可以每天自动执行数据库备份,从而减少人为错误和提高数据恢复的效率。本文将详细介绍如何在Linux下实现MySQL数据库的自动定时备份。
29 3
|
17天前
|
Go 计算机视觉
在Golang高并发环境中如何进行协程同步?
在此示例中,使用互斥锁来保护对共享计数器变量 c 的访问,确保并发的 HTTP 请求不会产生数据竞争。
39 3
|
1月前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
49 1
|
1月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
64 4
|
1月前
|
缓存 NoSQL Ubuntu
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
56 3
下一篇
无影云桌面