scrapy中scrapy_redis分布式内置pipeline源码及其工作原理

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: scrapy_redis分布式实现了一套自己的组件,其中也提供了Redis数据存储的数据管道,位于scrapy_redis.pipelines,这篇文章主要分析器源码及其工作流程,源码如下:from scrapy.

scrapy_redis分布式实现了一套自己的组件,其中也提供了Redis数据存储的数据管道,位于scrapy_redis.pipelines,这篇文章主要分析器源码及其工作流程,源码如下:

from scrapy.utils.misc import load_object
from scrapy.utils.serialize import ScrapyJSONEncoder
from twisted.internet.threads import deferToThread

from . import connection, defaults


default_serialize = ScrapyJSONEncoder().encode


class RedisPipeline(object):
    """Pushes serialized item into a redis list/queue

    Settings
    --------
    REDIS_ITEMS_KEY : str
        Redis key where to store items.
    REDIS_ITEMS_SERIALIZER : str
        Object path to serializer function.

    """


    def __init__(self, server,
                 key=defaults.PIPELINE_KEY,
                 serialize_func=default_serialize)
:

        """Initialize pipeline.

        Parameters
        ----------
        server : StrictRedis
            Redis client instance.
        key : str
            Redis key where to store items.
        serialize_func : callable
            Items serializer function.

        """

        self.server = server
        self.key = key
        self.serialize = serialize_func

    @classmethod
    def from_settings(cls, settings):
        params = {
            'server': connection.from_settings(settings),
        }
        if settings.get('REDIS_ITEMS_KEY'):
            params['key'] = settings['REDIS_ITEMS_KEY']
        if settings.get('REDIS_ITEMS_SERIALIZER'):
            params['serialize_func'] = load_object(
                settings['REDIS_ITEMS_SERIALIZER']
            )

        return cls(**params)

    @classmethod
    def from_crawler(cls, crawler):
        return cls.from_settings(crawler.settings)

    def process_item(self, item, spider):
        return deferToThread(self._process_item, item, spider)

    def _process_item(self, item, spider):
        key = self.item_key(item, spider)
        data = self.serialize(item)
        self.server.rpush(key, data)
        return item

    def item_key(self, item, spider):
        """Returns redis key based on given spider.

        Override this function to use a different key depending on the item
        and/or spider.

        """

        return self.key % {'spider': spider.name}


关于scrapy自定义数据管道在此前文章已经说过详见《scrapy中数据处理的两个模块:Item Pipeline与Exporter》,本篇文章阐述RedisPipeline的实现。

Redis类初始化参数,server, key=defaults.PIPELINE_KEY, serialize_func=default_serialize,其中第一个参数sever是Redis客户端的实例、key是scrapy_defaults默认的配置格式如下:

import redis


# For standalone use.
DUPEFILTER_KEY = 'dupefilter:%(timestamp)s'

PIPELINE_KEY = '%(spider)s:items'

REDIS_CLS = redis.StrictRedis
REDIS_ENCODING = 'utf-8'
# Sane connection defaults.
REDIS_PARAMS = {
    'socket_timeout': 30,
    'socket_connect_timeout': 30,
    'retry_on_timeout': True,
    'encoding': REDIS_ENCODING,
}

SCHEDULER_QUEUE_KEY = '%(spider)s:requests'
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'

START_URLS_KEY = '%(name)s:start_urls'
START_URLS_AS_SET = False

serialize_func是序列化Item的函数默认是json.dumps。

那我们对其工作原理就有了大致的认识,pipeline初始化传入一个Redis客户端、一个key、一个序列化函数;继续向下看,from_settings、from_crawler都是读取setting.py文件,完成初始化,核心函数process_item在下。

process_item源码为:

 def process_item(self, item, spider):
        return deferToThread(self._process_item, item, spider)

    def _process_item(self, item, spider):
        key = self.item_key(item, spider)
        data = self.serialize(item)
        self.server.rpush(key, data)
        return item

    def item_key(self, item, spider):
        """Returns redis key based on given spider.

        Override this function to use a different key depending on the item
        and/or spider.

        "
""
        return self.key % {'spider': spider.name}


process_主要实现了一个deferToThread方法,该方法作用是返回一个deferred对象,不过回调函数在另一个线程处理,主要用于数据库/文件读取操作。继续看deferToThread

def deferToThread(f, *args, **kwargs):
    """
    Run a function in a thread and return the result as a Deferred.

    @param f: The function to call.
    @param *args: positional arguments to pass to f.
    @param **kwargs: keyword arguments to pass to f.

    @return: A Deferred which fires a callback with the result of f,
    or an errback with a L{twisted.python.failure.Failure} if f throws
    an exception.
    """

    from twisted.internet import reactor
    return deferToThreadPool(reactor, reactor.getThreadPool(),
                             f, *args, **kwargs)


主要使用twisted.internet的 reactor模式,反应堆(reactor)模式,这种模式在单线程环境中调度多个事件源产生的事件到它们各自的事件处理例程中去,在这里实现一个线程池的效果,达到最后异步写入的效果。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
219 67
|
21天前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
327 7
|
2月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
168 3
|
2月前
|
缓存 监控 NoSQL
Redis设计与实现——分布式Redis
Redis Sentinel 和 Cluster 是 Redis 高可用与分布式架构的核心组件。Sentinel 提供主从故障检测与自动切换,通过主观/客观下线判断及 Raft 算法选举领导者完成故障转移,但存在数据一致性和复杂度问题。Cluster 支持数据分片和水平扩展,基于哈希槽分配数据,具备自动故障转移和节点发现机制,适合大规模高并发场景。复制机制包括全量同步和部分同步,通过复制积压缓冲区优化同步效率,但仍面临延迟和资源消耗挑战。两者各有优劣,需根据业务需求选择合适方案。
|
2月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
2月前
|
数据采集 存储 NoSQL
分布式爬虫去重:Python + Redis实现高效URL去重
分布式爬虫去重:Python + Redis实现高效URL去重
|
2月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
107 0
|
2月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
325 0

热门文章

最新文章