AI移动自动化测试框架设计(解读)

本文涉及的产品
小语种识别,小语种识别 200次/月
教育场景识别,教育场景识别 200次/月
通用文字识别,通用文字识别 200次/月
简介: AI移动自动化测试框架设计(解读) 理想种的移动UI自动化框架: 易于开发和维护 稳定性 执行效率 跨平台 跨应用 支持Hybrid(混合应用) 传统的UI自动化框架(UIAutomator、Espresso、appium等),或多或少在这些方法做的不够完美。

AI移动自动化测试框架设计(解读)

理想种的移动UI自动化框架:

  • 易于开发和维护

  • 稳定性

  • 执行效率

  • 跨平台

  • 跨应用

  • 支持Hybrid(混合应用)

传统的UI自动化框架(UIAutomator、Espresso、appium等),或多或少在这些方法做的不够完美。


那么理想中的框架应该是什么样的?

模拟用户的操作,用户在操作的时候是不需要知道控件的属性(ID、name)的,它应该是一种所见即所得的操作。

所以,像Sikuli 、AirTest这样的基于图片识别技术的测试框架就很好。

但是,它们也有一些不足:

  • 准确率不足

  • 没有层次结构

  • 代码稳定性差

  • 代码可维护性差

如果,测试脚本可以变成这样:

这个样的脚本表达接近我们的自然语言。比如,点击标签上的会员按钮,就变成 find('tab').find('会员'),代码的维护性也会变得很好。


要实现这样的框架需要哪些技术:

  • 图像切割

  • 图像分类识别

  • OCR文字识别

  • 图像相似度匹配

  • 像素点操作

图像切割:可以把一整张图片切割出不同的块,比如一张App的截屏,可以切割成导航栏、视频封面列表、搜索框等不同的块。

图像分类识别:对上面切割的块进行分类,需要图像分类的能力。

OCR文字识别:依赖图像 OCR 的识别能力,知道对应的视图里面有哪些文字。

图像相似度匹配能力:这一点传统的图像处理库就可以实现。比如Python的pillow库。

像素点的操作:可以依赖传统的框架,比如通过坐标完成操作,也可以使用机械臂来完成像素点的操作。


深度学习带来的机会

在深度学习以前,图像分类领域的准确率一定在75%以下,引入深度学习使准确率提高到98%、99%。有文章说准确率达到95%说明已经超过人类了,这是一个相当高的水平。

识别率在逐年提高。

ORC的能力主要体现在:完整准确率和文字准确率。

完整的准确率是指,在一个截图里面,会有一些标题和词组,如果标题里面有一个字出现了错误,就认为这个标题的识别是错误的,通过这种方式,准确率能够达到93%。

文字的准确率,是将一张截图分割成多个块,然后识别出每个块上的文字。因为已经分割了块,所以识别率可以达到98%。


终于介绍到AIon框架了。

有了上面这些技术做为基础以后,就可以尝试AIon框架实现了。

这中间还介绍了UI2Code 、pix2code两个“类似”框架的。它们是将截图生成用户界面代码,感兴趣可以百度了解。

这里直接介绍Alon的工作方法。敲黑板!这里考试重点。

AIon 会把一个截图切成几块:tab、导航、状态栏等,然后用深度学习图像分类,对每一块进行分类识别,识别完了以后,就会把对应块里的子元素提取出来,再用一些AI的技术,提取里面的内容,把它填充到子元素的属性里面去,最后就会得到二级视图树的结构,最后,就可以去做对应的点击操作了。


AIon的处理过程:

比如要实现一条测试用例,

首先截屏,对它进行场景判断,场景判断会应用到一些AI分类识别,识别出当前界面有没有弹出对话,或者它是否是登陆页的场景识别。场景识别完了以后,就会进行传统的图像切割,图像切割完了以后,进行布局分类,布局分类也会应用到一些AI的技术,分类完了以后,进行子元素的提取,对这个子元素进行填充,填充会应用到一些AI的技术。

最后,当视图树构建完了之后,匹配之前写的测试用例里面的条件进行匹配,匹配之后,执行测试用例,这就是整个AIon的核心流程。

由于考虑到之前的一些测试用例,还有一些传统的测试框架写的测试用例,本身还做了对传统测试框架的融合。

AIon的处理过程中涉及到一些技术问题这里就省略了,通篇阅读下来有点像论文。强烈建议阅读原文,我这里只是简化了对原文的解读。

从中get到了一些基于AI实现自动化框架的思路。未来的自动化测试肯定会越来越使用更简单,功能更强大。要么去实现AI自动化框架,要么被AI自动化框架淘汰!你选吧!

阅读原文

相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
32 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
3天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
46 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
1天前
|
人工智能 编解码 自然语言处理
AGUVIS:指导模型实现 GUI 自动化训练框架,结合视觉-语言模型进行训练,实现跨平台自主 GUI 交互
AGUVIS 是香港大学与 Salesforce 联合推出的纯视觉 GUI 自动化框架,能够在多种平台上实现自主 GUI 交互,结合显式规划和推理,提升复杂数字环境中的导航和交互能力。
25 8
AGUVIS:指导模型实现 GUI 自动化训练框架,结合视觉-语言模型进行训练,实现跨平台自主 GUI 交互
|
11天前
|
人工智能 Linux API
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
92 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
|
7天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
90 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
7天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
71 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
4天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
17 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
14天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
39 0
|
15天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
65 11
|
2月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
68 3