[python作业AI毕业设计博客]大数据Hadoop工具python教程1-HDFS Hadoop分布式文件系统

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Hadoop分布式文件系统(HDFS:Hadoop Distributed File System)是基于Java的分布式文件系统分布式,可扩展和可移植的文件系统,旨在跨越大型商用服务器集群。 HDFS的设计基于谷歌文件系统GFS(https://ai.google/research/pubs/pub51)。

Hadoop分布式文件系统(HDFS:Hadoop Distributed File System)是基于Java的分布式文件系统
分布式,可扩展和可移植的文件系统,旨在跨越大型商用服务器集群。 HDFS的设计基于谷歌文件系统GFS(https://ai.google/research/pubs/pub51)。与许多其他分布式文件系统一样,HDFS拥有大量数据并提供对许多客户端的透明访问。

HDFS以可靠和可扩展的方式存储非常大的文件:PB(1PB=1024TB,,针对非常大的文件)、GB和MB。它使用块结构文件系统来完成的。单个文件被拆分为固定大小的块,存储在集群中的计算机上。由多个块组成的文件通常不会将所有块存储在一台机器。

HDFS通过复制块并在集群中分发副本来确保可靠性。默认复制因子为3,表示每个块在群集上存在三次。即使单机出现故障,块级复制也保证数据可用。

本章首先介绍HDFS的核心概念,并解释如何使用本机内置命令与文件系统进行交互。

HDFS概述

HDFS的体系结构设计由两个进程组成:一个NameNode进程保存文件系统的元数据,一个或多个DataNode进程存储块。 NameNode和DataNode可以在一台机器上运行,但HDFS集群通常包含专机运行NameNode进程,可能还有数千台运行DataNode进程的计算机。

NameNode是HDFS中最重要的机器。它存储整个文件系统的元数据:文件名,文件权限以及每个文件对应块的位置。为了允许快速访问,NameNode将整个元数据结构存储在内存中。

NameNode还跟踪块的复制,确保机器故障不会导致数据丢失。由于NameNode存在单点故障,可以使用第2个NameNode生成主NameNode内存结构的快照,从而降低NameNode失败时数据丢失的风险。

在HDFS中存储块的机器称为DataNode。 DataNode通常是具有大存储容量的商用机器。与NameNode不同,少量DataNode失败,HDFS将继续正常运行。当DataNode失败时,NameNode将复制丢失的块,以保证最少复制数。

图片.png

HDFS交互

与HDFS交互主要使用hdfs的脚本

$ hdfs COMMAND [-option <arg>]

参考资料

通用文件操作

在HDFS上执行基本文件操作操作,使用dfs子命令。 dfs命令支持类似Linux shell中的许多文件操作。

$ hdfs COMMAND [-option <arg>]

注意:hdfs命令以系统用户的权限运行。 以下示例用“hduser”的用户运行。

列出HDFS中目录的内容,请使用-ls命令:

$ hdfs dfs -mkdir /user
$ hdfs dfs -mkdir /user/hduser
$ hdfs dfs -ls /
Found 1 items
drwxr-xr-x   - hduser_ supergroup          0 2019-01-21 16:37 /user
$ hdfs dfs -ls -R /user
drwxr-xr-x   - hduser_ supergroup          0 2019-01-21 16:45 /user/hduser

put与get数据

$ hdfs dfs -put /home/hduser_/input.txt /user/hduser
$ hdfs dfs -cat /user/hduser/input.txt
https://china-testing.github.io/
$ dfs -get /user/hduser/input.txt /home/hduser_/test.txt

命令参考

$ hdfs dfs
Usage: hadoop fs [generic options]
    [-appendToFile <localsrc> ... <dst>]
    [-cat [-ignoreCrc] <src> ...]
    [-checksum <src> ...]
    [-chgrp [-R] GROUP PATH...]
    [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
    [-chown [-R] [OWNER][:[GROUP]] PATH...]
    [-copyFromLocal [-f] [-p] [-l] [-d] <localsrc> ... <dst>]
    [-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
    [-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] <path> ...]
    [-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>]
    [-createSnapshot <snapshotDir> [<snapshotName>]]
    [-deleteSnapshot <snapshotDir> <snapshotName>]
    [-df [-h] [<path> ...]]
    [-du [-s] [-h] [-x] <path> ...]
    [-expunge]
    [-find <path> ... <expression> ...]
    [-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
    [-getfacl [-R] <path>]
    [-getfattr [-R] {-n name | -d} [-e en] <path>]
    [-getmerge [-nl] [-skip-empty-file] <src> <localdst>]
    [-help [cmd ...]]
    [-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [<path> ...]]
    [-mkdir [-p] <path> ...]
    [-moveFromLocal <localsrc> ... <dst>]
    [-moveToLocal <src> <localdst>]
    [-mv <src> ... <dst>]
    [-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>]
    [-renameSnapshot <snapshotDir> <oldName> <newName>]
    [-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...]
    [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
    [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
    [-setfattr {-n name [-v value] | -x name} <path>]
    [-setrep [-R] [-w] <rep> <path> ...]
    [-stat [format] <path> ...]
    [-tail [-f] <file>]
    [-test -[defsz] <path>]
    [-text [-ignoreCrc] <src> ...]
    [-touchz <path> ...]
    [-truncate [-w] <length> <path> ...]
    [-usage [cmd ...]]

Generic options supported are:
-conf <configuration file>        specify an application configuration file
-D <property=value>               define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port>  specify a ResourceManager
-files <file1,...>                specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...>               specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...>          specify a comma-separated list of archives to be unarchived on the compute machines

The general command line syntax is:
command [genericOptions] [commandOptions]

更多帮助可以 hdfs dfs -usage 或 hdfs dfs -help

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
6天前
|
人工智能 机器人 UED
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
116 85
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App
DeepSeek Artifacts是Hugging Face推出的免费AI编程工具,基于DeepSeek V3,支持快速生成React和Tailwind CSS代码,适合快速原型开发和前端组件构建。
201 28
DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App
|
8天前
|
人工智能 资源调度 JavaScript
PPTAgent:中科院开源AI工具,自动将文档转化为高质量PPT
PPTAgent 是中科院推出的自动生成演示文稿框架,基于两阶段编辑方法,支持智能分析、大纲生成、幻灯片生成与评估,适用于教育、企业培训等多种场景。
179 18
PPTAgent:中科院开源AI工具,自动将文档转化为高质量PPT
|
8天前
|
人工智能 API UED
AI智能体再进化,工作流怎么玩?阿里云百炼上手教程
本次分享由讲师林粒粒呀介绍如何快速制作AI智能工具,特别是利用阿里云百炼平台创建工作流。通过简单的拖拽操作,小白用户也能轻松上手,实现从PPT主题到大纲的自动生成,并能一次性生成多个版本。借助API和Python脚本,还可以将Markdown格式的大纲转换为本地PPT文件。整个流程展示了AI智能体在实际应用中的高效性和实用性,帮助用户大幅提升工作效率。
86 31
|
11天前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
7天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
43 7
|
5天前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
29 1
|
14天前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
6天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
2天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
95 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备