最强NLP模型BERT可视化学习

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 最强NLP模型谷歌BERT狂破11项纪录,全面超越人类,本文通过可视化带你直观了解它。

1

2018年是自然语言处理(Natural Language Processing, NLP)领域的转折点,一系列深度学习模型在智能问答及情感分类等NLP任务中均取得了最先进的成果。近期,谷歌提出了BERT模型,在各种任务上表现卓越,有人称其为“一个解决所有问题的模型”。

BERT模型的核心思想有两点,对推动NLP的发展有着重要的作用:(1)Transformer结构;(2)无监督的预训练。Transformer是一个只基于注意力(Attention)机制的序列模型,《Attention is all you need》一文中指出,它摒弃了固有的定式,没有采用RNN的结构。BERT模型同时需要预训练,从两个无监督任务中获取权重:语言建模(给定左右上下文,预测丢失的单词)以及下一个句子预测(预测一个句子是否跟在另一个句子后面)。

BERT是个“多头怪”
BERT与传统的注意力模型有所不同,它并非在RNN的隐藏状态上直接连接注意力机制。BERT拥有多层注意力结构(12层或24层,取决于模型),并且在每个层(12层或16层)中都包含有多个“头”。由于模型的权重不在层与层之间共享,一个BERT模型相当于拥有24×16=384种不同的注意力机制。

BERT可视化
BERT模型较为复杂,难以直接理解它学习的权重的含义。深度学习模型的可解释性通常不强,但我们可以通过一些可视化工具对其进行理解。Tensor2Tensor提供了出色的工具对注意力进行可视化,我结合PyTorch对BERT进行了可视化。点击查看详情

2

该工具将注意力可视化为连接被更新位置(左)和被关注位置(右)之间的连线。不同的颜色对应不同的“注意力头”,线段宽度反映注意力值的大小。在该工具的顶部,用户可以选择模型层,以及一个或者多个“注意力头”(通过点击顶部颜色切换,一共包含12个不同的“头”)

BERT到底学习什么?
该工具能用于探索预先训练的BERT模型的各个层以及头部的注意模式。以下列输入值为例进行详解:

句子A:I went to the store.
句子B:At the store, I bought fresh strawberries.

BERT采用WordPiece tokenization对原始句子进行解析,并使用[CLS]对token进行分类以及[SEP]对token进行分隔,则输入的句子变为:[CLS] i went to the store. [SEP] at the store, i bought fresh straw ##berries. [SEP]

接下来我将确定6个关键模式,并展示每个模式特定层/头的可视化效果。

模式1:下一个单词的注意力(Attention to next word)
在该模式下,特定单词的大部分注意力都集中在序列中该单词的下一个token处。如下图所示,我们以第二层的head 0为例(所选头部由顶部颜色栏中突出显示的正方形表示)。左边图中展示了所有token的注意力,右边则显示了特定token(“i”)的注意力。“i”几乎所有的注意力都集中在它的下一个token,即“went”处。

3

左图中,[SEP]指向了[CLS],而非“at”,也就是说,指向下一个单词的这种模式只在句子中起作用,而在句子间的效果较弱。该模式类似于RNN中的backward,状态从右往左依次更新。

模式2:前一个单词的注意力(Attention to previous word)
在该模式下,特定单词的大部分注意力都集中在序列中该单词的前一个token处。本例中,“went”的大部分注意力集中于它的前一个单词“i”。模式2不如模式1明显,特定的单词注意力有所分散。该过程与RNN中的forward类似。

4

模式3:相同/相关单词的注意力(Attention to identical/related words)
在该模式下,特定单词的大部分注意力集中于与其相同或者相关的单词,包括该单词本身。下图中,“store”的大部分注意力集中在它本身。由于注意力有所分散,该模式也不明显。

5

模式4:其它句子中相同/相关单词的注意力(Attention to identical/related words in other sentence)
在该模式中,注意力集中在其它句子中与指定单词相同或者相似的单词。如下图,第二个句子中的“store”与第一个句子中的“store”关联最强。这对于下一个句子预测任务非常有帮助,它能够帮助识别句子之间的关系。

6

模式5:预测单词的注意力(Attention)
在该模式下,注意力集中于其它可以预测源单词的单词上,且不包括源单词本身。如下图,“straw”的注意力主要集中于“##berries”,而“##berries”的注意力主要集中于“straw”。

7

模式6:分隔符标记的注意力(Attention to delimiter tokens)
在该模式下,特定单词的注意力主要集中于分隔符,[CLS]或[SEP]中。如下图,大多数的注意力都集中在两个[SEP]中,这或许是模型将语句级别状态传递到各个token中的一种方法。

8


作者信息

Jesse Vig

本文由阿里云云栖社区组织翻译。
文章原标题《Deconstructing BERT: Distilling 6 Patterns from 100 Million Parameters》,译者:Elaine,审校:袁虎。
文章简译,更为详细的内容,请查看原文

相关文章
|
1月前
|
人工智能 自然语言处理
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
Promptriever 是一种新型信息检索模型,由约翰斯·霍普金斯大学和 Samaya AI 联合推出。该模型能够接受自然语言提示,并以直观的方式响应用户的搜索需求。通过在 MS MARCO 数据集上的训练,Promptriever 在标准检索任务上表现出色,能够更有效地遵循详细指令,提高查询的鲁棒性和检索性能。
62 6
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的Transformer模型及其在自然语言处理中的应用
探索深度学习中的Transformer模型及其在自然语言处理中的应用
62 5
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
221 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
117 0
|
3月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
3月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
250 0
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
220 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller