云知声发布多模态AI芯片战略,同步曝光三款在研芯片

简介: 未来,云知声的AI芯片将不仅仅局限于语音处理。

未来,云知声的AI芯片将不仅仅局限于语音处理。

继去年5月在行业率先推出首款面向物联网的AI芯片——雨燕(Swift)及其系统解决方案之后,1月2日,国内领先的人工智能企业云知声在京召开新闻发布会,正式公布了其多模态AI芯片战略与规划。会上同步曝光了其正在研发中的多款定位不同场景的AI芯片,包括第二代物联网语音AI芯片雨燕Lite、面向智慧城市的支持图像与语音计算的多模态AI芯片海豚(Dolphin),以及面向智慧出行的车规级多模态AI芯片雪豹(Leopard)。

TB1p24dzMHqK1RjSZFEXXcGMXXa.png

5G推动AIoT落地,多模态AI芯成必然

云知声创始人/CEO黄伟认为,当前我们正处于5G爆发的边缘,5G与人工智能的结合将真正促使万物智联(AIoT)的落地与实现。可以预见的是,未来巨量的多维数据(如语音、图像、视频等)集中处理与边缘式分布计算的需求,势必将进一步挑战AI底层支持硬件——芯片的计算能力。

与此同时,AIoT场景下人工智能应用对于端云互动有着强需求。强大的云会让端能力更强,而强大的端则可提升数据处理的实时性和有效性,进而增强云的能力。二者需要紧密结合,这要求对芯片设计和云端架构进行统一考量。传统的通用方案架构由于在高实时性、高智能化场景中的算力有限,且无法平衡好成本、功耗、安全性等诸多现实需求,因此具备多维度AI数据集中处理能力的多模态AI芯片将成必由之路。

TB1zaM3zrPpK1RjSZFFXXa5PpXa.png

图 |云知声创始人兼CEO黄伟

黄伟同时指出,面向5G万物智联时代,人工智能服务需提供更加场景化的解决方案,云+芯一体化的服务模式将成为行业主流。基于此,他进一步对传统SOC(System On Chip)概念提出全新定义,其中S代表不同的AI服务能力即Skills,O代表云端与边缘侧的互动On/off Cloud,C代表具备智能处理能力的AI芯片。

从IVM到雨燕,云知声的造芯之路

云知声2014年开始切入物联网AI硬件芯片方案(IVM),并于2015年开始形成量产出货,其中家居领域客户覆盖格力、美的、海尔、长虹、海信、华帝等几乎所有国内一线家电厂商。在深入场景提供服务的过程中,为弥补通用芯片方案在给定成本和功耗条件下的能效比问题,以及在边缘算力、多模态AI数据处理方面的能力短板,2015年云知声正式启动自研AI芯片计划。

去年5月16日,云知声正式发布了旗下耗时近三年自主研发打造的首款物联网AI芯片。该芯片采用云知声自主AI指令集,拥有具备完整自主知识产权的DeepNet1.0、uDSP(数字信号处理器),并支持DNN/LSTM/CNN等多种深度神经网络模型,性能较通用方案提升超50倍。

发布芯片后仅四个月,云知声便选择将基于雨燕的解决方案进行开源,于去年9月正式推出智能家居、智能音箱的两套标杆解决方案。通过“云端芯”结合,提供给客户与合作伙伴面向具体场景的软硬件一体化Turnkey解决方案,可让客户站在更高的设计起点、以更低的成本,在更短的时间周期内打造出更稳定可靠的产品。同时,开源的方案也可确保客户基于已提供的AI能力自行设计其它各种长尾产品形态,构建更为丰富的AIoT生态。

目前,基于雨燕芯片的全栈解决方案已导入的各类方案商及合作伙伴已超过10家,包括美的、奥克斯、海信、京东、360、中国平安、硬蛋科技等,相关产品最早将于Q1量产上市。

TB1UgBXzQvoK1RjSZFDXXXY3pXa.png

物联网 AI 芯片的多模态演进之路

在第一代UniOne芯片雨燕的发布会上,云知声联合创始人李霄寒曾指出,UniOne并不是一颗芯片,而是一系列芯片,代表了云知声对于物联网AI芯片发展战略的整体构想。在今日举行的云知声2019多模态AI芯片战略发布会上,李霄寒再次从三方面论证了物联网多模态AI芯片的必要性。他认为,当前物联网产品线的AI芯片越来越明显地体现出三个趋势:

首先是场景化。芯片设计正在由原来的片面追求PPA ,即性能(Power)、功耗(Performance)和面积(Area)逐渐演变成基于软硬一体,甚至包括云端服务的方式来解决某个垂直领域的具体问题,芯片本身上升成为整个解决方案中的重要部分,而非唯一;

其次,端云互动。在物联网的不同应用场景下,海量终端设备要实现功能智能化必须端云配合,即形成边缘算力和云端算力的动态平衡。端云互动的命题需要AI芯片的强有力支持,进一步也深刻影响到芯片的设计,以及最终的交付;

再者,数据多模态。在以5G驱动的万物智联场景下,芯片所接触到的数据维度将由原来的单一化走向多元化,芯片所需处理的数据也由单模态变成多模态,这对芯片尤其是物联网人工智能芯片的设计提出了新的挑战。

TB1xzs9zpzqK1RjSZSgXXcpAVXa.png

图 |云知声联合创始人李霄寒

结合以上三点,李霄寒认为,物联网AI芯片的最终呈现形式将不再是一个单一的硬件,而必然是承载着边缘能力与云端能力的多模态AI软硬一体解决方案。

云知声多模态AI芯片技术布局

为实现多模态AI芯片的战略落地,目前云知声已在加速技术布局,并在机器视觉方面取得飞速进展。其中,面向机器视觉的轻量级图像信号处理器已可实现在不依赖外部内存的情况下,在30 fps的速率下实时对传感器的图片进行预处理,以进一步提高后续机器视觉处理模块的处理速度和效果。借助基于人脸信息分析的多模态技术,已可实现人脸/物体识别、表情分析、标签化、唇动状态跟踪等功能,可为产品交互和用户体验提供更多的可玩性和灵活性。

尤为值得一提的是,云知声多模态人工智能核心IP——DeepNet2.0的发布,标志着云知声人工智能处理核心由1.0语音时代全面迈入2.0融合语音、图像等处理能力的多模态时代。DeepNet2.0可兼容LSTM/CNN/RNN/TDNN等多种推理网络,支持可重构计算与Winograd处理,最高可配置算力达4T,达行业一流水平。目前云知声DeepNet2.0已在FPGA上得到验证,将在2019年落地的全新多模态AI芯片海豚(Dolphin)上落地。

TB1s4.6zxTpK1RjSZR0XXbEwXXa.png

除此之外,在图像与芯片技术的产学研合作方面,云知声还与杜克大学所领导的美国自然科学基金旗下唯一人工智能计算中心——ASIC达成深度合作,致力于AI芯片算法压缩与量化技术,以及非冯新型AI芯片计算架构研究,将进一步为云知声多模态AI芯片战略的推进夯实基础。

三款在研芯片曝光,2019年启动量产

在首款量产芯片雨燕已有大批客户导入,占领市场先发优势的背景下,2019年云知声在芯片落地规划方面仍将保持积极态度。

李霄寒透露,在持续迭代升级现有雨燕芯片的性能与服务之外,目前云知声多款面向不同方向的芯片也已在研发中,包括适用性更广的超轻量级物联网语音AI芯片雨燕Lite,集成云知声最先进神经网络处理器DeepNet2.0,可面向智慧城市场景提供对语音和图像等多模态计算支持的多模态AI芯片海豚(Dolphin),以及与吉利集团旗下生态链企业亿咖通科技共同打造的面向智慧出行场景的多模态车规级AI芯片雪豹(Leopard)。以上三款芯片计划于2019年启动量产。

TB15NZ8zxTpK1RjSZFKXXa2wXXa.png

目前,依托在家居、车载等真实场景下丰富的产品经验,以及具备先发优势的AI芯片能力,云知声将业务覆盖到包括智能家居、智能汽车、智能儿童机器人、智慧酒店、智慧交通等诸多场景。未来云知声将持续发力多模态AI芯片,不断拓展技术与场景生态,以实现面向未来AIoT时代的全面赋能。

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
123 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
17天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
110 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
17天前
|
数据采集 人工智能 编解码
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
书生·万象InternVL 2.5是由上海AI实验室OpenGVLab团队推出的开源多模态大语言模型系列。该模型在多模态理解基准(MMMU)上表现优异,超越了许多商业模型,适用于图像和视频分析、视觉问答、文档理解和多语言处理等多个领域。
64 7
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
67 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
16天前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
64 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
4天前
|
人工智能 数据挖掘 BI
结构化表格也成模态!浙大TableGPT2开源,最强表格AI问世
在AI快速发展中,大型语言模型(LLMs)如GPTs等展现了巨大潜力。然而,表格数据整合这一关键领域发展不足。浙江大学提出TableGPT2,使用593.8K张表格和2.36M查询-表格-输出三元组进行预训练和微调。该模型创新性地引入了表格编码器,增强了处理模糊查询、缺失列名和不规则表格的能力。TableGPT2在23个基准测试指标上表现出色,7B模型性能提升35.20%,72B模型提升49.32%。其开源代码和模型为社区提供了强大的研究工具。
25 12
|
27天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
65 12
|
24天前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
1月前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。