阿里巴巴AI夺肝结节诊断两项世界冠军,至今无人超越

简介: 在澳门用人工智能预测流感趋势后,阿里巴巴还在继续探索如何用科技保障人类健康,这一次是更准确地测量肝结节。 12月28日消息,在全球LiTS(Liver Tumor Segmentation Challenge,肝脏肿瘤病灶区CT图像分割挑战)上,阿里巴巴从近百支科学家队伍中脱颖而出,已获得两项第一,至今无人超越。

在澳门用人工智能预测流感趋势后,阿里巴巴还在继续探索如何用科技保障人类健康,这一次是更准确地测量肝结节。

12月28日消息,在全球LiTS(Liver Tumor Segmentation Challenge,肝脏肿瘤病灶区CT图像分割挑战)上,阿里巴巴从近百支科学家队伍中脱颖而出,已获得两项第一,至今无人超越。

1

肝病是困扰人类的重大公共卫生威胁,考古显示4500年前的人类骨骼中甚至就有最古老的乙肝病毒。在我国,目前肝癌的死亡率在恶性肿瘤中位居第二,仅次于肺癌。

肝结节尽管不致命,却可能是一些恶性肿瘤的先兆。LiTS由德国慕尼黑理工大学、以色列特拉维夫大学等高校、科研院所与国际顶级医学图像年会MICCA联合举办,希望用创新的算法解决肝脏肿瘤病灶CT图像的自动分割。

对肝结节的准确测量可以辅助医生做出决策和治疗方案。但肝结节形态多样,即使是同一个病人,结节的大小、形状都不一样,从而导致结节间灰度分布差异大、或与周围组织灰度相似,甚至没有清晰的边界。

阿里巴巴通过对CT图像层间信息和层内信息融合的网络结构分析解决肝结节类别多样性的问题,采用到基于原子卷积的空间金字塔池化(Atrous Spatial Pyramid Pooling)、亚像素卷积(Sub Pixel Convolution)及多特征融合等技术。
1

据了解,这一技术由阿里云人工智能中心研发,下一步是判断肝结节是否为恶性,对临床医疗将有更大的促进作用。

此前这个团队还打破了国际AI检测肺结节准确度的世界纪录,创造了全程无须人工干预的检测方式:机器自动读取病人CT序列,直接输出检测到的肺结节。

负责人华先胜表示,目前研究范围已经覆盖肺、肝、骨、心脏、脑等部位的疾病,涉及影像分析、自然语言处理、设备信号处理等相关技术,部分技术已经落地到实际的医疗诊断中。

华先胜是视觉识别和搜索领域的国际权威学者,曾获国际电气与电子工程协会院士 (IEEE Fellow)、美国计算机协会ACM杰出科学家。

麦肯锡全球研究院曾在报告中指出,将人工智能应用于保护公共健康是可靠的选择。包括阿里巴巴在内,IBM、谷歌等科技公司都在研究如何在医疗领域发挥人工智能的作用。谷歌在今年10月曾公布最新进展,能通过AI检测转移性乳腺癌。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI与未来医疗:革命性的诊断与治疗
本文探讨了人工智能在医疗领域的应用及其对未来医疗保健的潜在影响。通过分析当前AI技术的发展,特别是在疾病诊断、个性化治疗和患者护理方面的应用,揭示了AI如何提高医疗服务效率、准确性和可及性。同时,讨论了AI技术面临的伦理和隐私挑战,为未来医疗保健的发展方向提供了思考。
|
2天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
3天前
|
机器学习/深度学习 人工智能 算法
AI在医疗影像诊断中的应用与未来展望####
本文深入探讨了人工智能(AI)在医疗影像诊断领域的最新进展、当前应用实例及面临的挑战,并展望了其未来的发展趋势。随着深度学习技术的不断成熟,AI正逐步成为辅助医生进行疾病早期筛查、诊断和治疗规划的重要工具。本文旨在为读者提供一个全面的视角,了解AI如何在提高医疗效率、降低成本和改善患者预后方面发挥关键作用。 ####
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗影像诊断中的应用
探索AI在医疗影像诊断中的应用
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
探索AI在医疗诊断中的革命性应用
【10月更文挑战第29天】 随着人工智能技术的飞速发展,其在医疗领域的应用已成为推动现代医疗服务创新的重要力量。本文旨在探讨AI技术如何在医疗诊断中发挥其独特优势,通过分析AI在影像诊断、疾病预测和个性化治疗计划制定等方面的应用案例,揭示AI技术如何提高诊断的准确性和效率,以及面临的挑战和未来发展趋势。
22 1
|
9天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
9天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
26 2
|
25天前
|
机器学习/深度学习 人工智能 监控
AI与未来医疗:革命性的诊断与治疗
【10月更文挑战第11天】 本文探讨了人工智能(AI)在现代医疗领域的应用,重点分析了AI如何通过精确的数据分析和机器学习技术,实现疾病的早期诊断和个性化治疗方案。通过具体案例展示了AI在医学影像分析、基因编辑、远程医疗及患者管理等方面的巨大潜力。同时,也讨论了AI在医疗中面临的伦理和隐私挑战,并提出了可能的解决方案。
|
27天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用与未来发展趋势分析
【10月更文挑战第9天】 本文深入探讨了人工智能(AI)在医疗诊断领域的现状及其应用,包括影像识别、临床数据处理及个性化治疗方案的制定。通过具体案例分析,展示了AI技术如何提高诊断准确性、缩短诊断时间,并减轻医生的工作负担。同时,本文还讨论了AI在医疗诊断中面临的伦理问题和法律障碍,以及解决这些问题的可能途径。最后,对AI在未来医疗行业中的发展潜力进行了展望,指出其在提升医疗服务质量和效率方面的巨大潜力。
50 2
|
1月前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第2天】本文深入探讨了人工智能技术在医疗诊断领域的应用,以及其带来的变革。通过分析AI技术的工作原理和实际应用案例,揭示了AI在提高诊断准确率、优化治疗流程等方面的巨大潜力。同时,文章也指出了AI在医疗领域面临的伦理、法律和技术等挑战,并讨论了未来可能的发展方向。
48 7

热门文章

最新文章

下一篇
无影云桌面