中科院国产多语言大模型-YAYI2开源!家族AI应用场景全覆盖!

简介: 中科院国产多语言大模型-YAYI2开源!家族AI应用场景全覆盖!

项目简介


YAYI 2 是中科闻歌研发的新一代开源大语言模型,中文名:雅意,采用了超过 2   万亿 Tokens 的高质量、多语言语料进行预训练。

开源地址:https://github.com/wenge-research/YAYI2


YAYI2-30B是其模型规模,是基于 Transformer 的大语言模型。拥有300亿参数规模,基于国产化算力支持,数据语料安全可控,模型架构全自主研发。在媒体宣传、舆情感知、政务治理、金融分析等场景具有强大的应用能力。具有语种覆盖多、垂直领域深、开源开放的特点。


中科闻歌 此次开源计划是希望促进中文预训练大模型开源社区的发展,并积极为此做出贡献,共同构建雅意大模型生态。


预训练数据


雅意2.0 在预训练阶段,采用了互联网数据来训练模型的语言能力,还添加了通用精选数据和领域数据,以增强模型的专业技能。

同时其还构建了一套全方位提升数据质量的数据处理流水线,包括标准化、启发式清洗、多级去重、毒性过滤四个模块。共收集 240TB 原始数据,预处理后仅剩 10.6TB 高质量数据。


分词器


  • YAYI 2 采用 Byte-Pair Encoding(BPE)作为分词算法,使用 500GB 高质量多语种语料进行训练,包括汉语、英语、法语、俄语等十余种常用语言,词表大小为 81920。
  • 对数字进行逐位拆分,以便进行数学相关推理;同时,在词表中手动添加了大量HTML标识符和常见标点符号,以提高分词的准确性。同时还预设了200个保留位,以便未来可能的应用。
  • 采样了单条长度为 1万 Tokens 的数据形成评价数据集,涵盖中文、英文和一些常见小语种,并计算了模型的压缩比。


  • 压缩比越低通常表示分词器具有更高效率的性能。


环境安装


1、克隆本仓库内容到本地环境

git clone https://github.com/wenge-research/YAYI2.git
cd YAYI2

2、创建 conda 虚拟环境

conda create --name yayi_inference_env python=3.8
conda activate yayi_inference_env

本项目需要 Python 3.8 或更高版本。

3、安装依赖

pip install transformers==4.33.1
pip install torch==2.0.1
pip install sentencepiece==0.1.99
pip install accelerate==0.25.0

4、模型推理

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
>>> inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
>>> inputs = inputs.to('cuda')
>>> pred = model.generate(
        **inputs, 
        max_new_tokens=256, 
        eos_token_id=tokenizer.eos_token_id, 
        do_sample=True,
        repetition_penalty=1.2,
        temperature=0.4, 
        top_k=100, 
        top_p=0.8
        )
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

总结


雅意大模型 应用于多个垂直领域行业,如政务、舆情、财税、教育、中医药、金融等都有它的身影。同时也衍生出了一系列家族AI产品,比如企业级AI助手、数据标注平台、知识库AI助手、绘画创作平台、AI机器人等。

相信国产模型的生态开源开放,能对多语种、多领域、多行业的应用场景提供一大助力。

相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
Skywork-R1V 2.0是昆仑万维最新开源的多模态推理模型,通过混合强化学习和多模态奖励模型实现复杂推理任务,在理科题目解答和科研分析中展现出色性能。
150 11
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
|
25天前
|
人工智能 测试技术 计算机视觉
让AI看懂3小时长视频!Eagle 2.5:英伟达推出8B视觉语言模型,长视频理解能力碾压72B大模型
Eagle 2.5是英伟达推出的8B参数视觉语言模型,通过创新训练策略在长视频和高分辨率图像理解任务中超越更大规模模型,支持512帧视频输入和多样化多模态任务。
143 11
让AI看懂3小时长视频!Eagle 2.5:英伟达推出8B视觉语言模型,长视频理解能力碾压72B大模型
|
26天前
|
人工智能 搜索推荐
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
SocioVerse是由复旦大学联合小红书等机构开源的社会模拟框架,基于大语言模型和千万级真实用户数据构建,能精准模拟群体行为并预测社会事件演化趋势。
117 2
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
|
26天前
|
人工智能 编解码 算法
AI生成视频告别剪辑拼接!MAGI-1:开源自回归视频生成模型,支持一镜到底的长视频生成
MAGI-1是Sand AI开源的全球首个自回归视频生成大模型,采用创新架构实现高分辨率流畅视频生成,支持无限扩展和精细控制,在物理行为预测方面表现突出。
240 1
AI生成视频告别剪辑拼接!MAGI-1:开源自回归视频生成模型,支持一镜到底的长视频生成
|
26天前
|
人工智能 自然语言处理 运维
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
ChatTS-14B是字节跳动开源的时间序列专用大模型,基于Qwen2.5-14B微调优化,通过合成数据对齐技术显著提升分析能力,支持自然语言交互完成预测推理等复杂任务。
114 1
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
|
22天前
|
存储 人工智能 搜索推荐
如何用大模型+RAG 给宠物做一个 AI 健康助手?——阿里云 AI 搜索开放平台
本文分享了如何利用阿里云 AI 搜索开放平台,基于 LLM+RAG 的系统框架,构建“宠物医院AI助手”的实践过程。
224 14
|
20天前
|
人工智能 自然语言处理 搜索推荐
AI 搜索开放平台重磅发布:Qwen3 模型上线啦
阿里云AI搜索开放平台重磅发布最新Qwen3模型,为企业和开发者提供全栈智能搜索解决方案。Qwen3作为最新一代大模型,在推理、多语言支持和Agent能力上表现卓越。用户可通过三步快速体验Qwen3服务,助力业务在AI时代抢占先机。
180 12
|
13天前
|
机器学习/深度学习 人工智能 边缘计算
一文了解,炎鹊YNQUE-Xo1行业垂直领域AI大模型。
炎鹊科技推出的YNQUE-Xo1垂直领域AI大模型集群,重新定义了AI与产业深度融合的范式。通过数据工程、模型架构和训练策略三大维度,Xo1突破通用模型瓶颈,在专业场景中实现性能与效率跃升。其MoE架构、动态路由机制及三阶段优化策略,大幅提升参数利用率与可解释性。YNQUE-Xo1不仅在医疗、金融等领域测试中精度提升显著,还适配边缘计算,成为推动产业智能化升级的核心引擎,从“工具赋能”迈向“认知基础设施”。
|
23天前
|
人工智能 搜索推荐 API
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
74 2
|
25天前
|
机器学习/深度学习 人工智能 自动驾驶
让AI看懂图像每个像素!英伟达推出多模态大模型 DAM-3B:图像视频局部描述精度提升300%
英伟达推出的DAM-3B多模态大语言模型,通过创新的焦点提示技术和局部视觉骨干网络,实现了对图像和视频中特定区域的精准描述生成,为内容创作和智能交互领域带来全新可能。
151 0
让AI看懂图像每个像素!英伟达推出多模态大模型 DAM-3B:图像视频局部描述精度提升300%

热门文章

最新文章