python爬虫-抓取腾讯招聘信息页面

简介: 本爬虫主要使用了requests、json、bs4(BeautifulSoup)等相关模块,不完善之处请大家不吝赐教!:)出处:https://github.

本爬虫主要使用了requests、json、bs4(BeautifulSoup)等相关模块,不完善之处请大家不吝赐教!:)
出处:https://github.com/jingsupo/python-spider/blob/master/day04/04tencent_hr.py

# -*- coding:utf-8 -*-

import requests, json, time
from bs4 import BeautifulSoup


class tencent_hr(object):
    def __init__(self):
        self.base_url = "http://hr.tencent.com/position.php?"
        self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko"}
        self.item_list = []
        self.page = 0

    # 发送请求
    def send_request(self, url, params={}):
        time.sleep(2)
        try:
            response = requests.get(url, params=params, headers=self.headers)
            return response.content
        except Exception as e:
            print e

    # 解析数据
    def parse_data(self, data):
        # 初始化
        bs = BeautifulSoup(data, 'lxml')

        # 获取标签-结果为列表
        data_list = bs.select('.even, .odd')

        # 将结果中的每一行数据提取出来
        for data in data_list:
            data_dict = {}
            data_dict['work_name'] = data.select('td a')[0].get_text()
            data_dict['work_type'] = data.select('td')[1].get_text()
            data_dict['work_count'] = data.select('td')[2].get_text()
            data_dict['work_place'] = data.select('td')[3].get_text()
            data_dict['work_time'] = data.select('td')[4].get_text()

            # 将每条字典数据添加进列表
            self.item_list.append(data_dict)

        # 判断是否是最后一页,条件:是否有noactive值
        # 先找到下一页的标签
        next_label = bs.select('#next')
        # 根据标签获取属性class的值-返回结果为列表
        judge = next_label[0].get('class')

        return judge

    # 写入文件
    def write_file(self):
        # 将列表转换成字符串
        data_str = json.dumps(self.item_list)

        with open('04tencent_hr.json', 'w') as f:
            f.write(data_str)

    # 调度运行
    def run(self):
        while True:
            # 拼接参数
            params = {
                "keywords": "python",
                "tid": "0",
                "lid": "2156",
                "start": self.page,
            }

            # 发送请求
            data = self.send_request(self.base_url, params=params)

            # 解析数据
            judge = self.parse_data(data)

            self.page += 10
            print self.page

            # 如果到了最后一页,出现noactive,跳出循环
            if judge:
                break

        self.write_file()


if __name__ == '__main__':
    spider = tencent_hr()
    spider.run()
目录
相关文章
|
2月前
|
Python
Python办公自动化:删除任意页数pdf页面
Python办公自动化:删除任意页数pdf页面
54 1
Python办公自动化:删除任意页数pdf页面
|
1月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
156 66
|
4天前
|
数据采集 Python
python爬虫抓取91处理网
本人是个爬虫小萌新,看了网上教程学着做爬虫爬取91处理网www.91chuli.com,如果有什么问题请大佬们反馈,谢谢。
20 4
|
2月前
|
数据采集 存储 监控
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
本文探讨了如何利用 PHP 的 `set_time_limit()` 与爬虫工具的 `setTrafficLimit()` 方法,结合多线程和代理 IP 技术,高效稳定地抓取百度云盘的公开资源。通过设置脚本执行时间和流量限制,使用多线程提高抓取效率,并通过代理 IP 防止 IP 封禁,确保长时间稳定运行。文章还提供了示例代码,展示了如何具体实现这一过程,并加入了数据分类统计功能以监控抓取效果。
60 16
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
|
14天前
|
数据采集 Web App开发 JavaScript
Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容
本文介绍了如何使用Selenium爬虫技术抓取抖音评论,通过模拟鼠标悬停操作和结合代理IP、Cookie及User-Agent设置,有效应对动态内容加载和反爬机制。代码示例展示了具体实现步骤,帮助读者掌握这一实用技能。
Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容
|
23天前
|
Python
Python对PDF文件页面的旋转和切割
Python对PDF文件页面的旋转和切割
35 3
|
23天前
|
数据采集 JavaScript 前端开发
JavaScript逆向爬虫——使用Python模拟执行JavaScript
JavaScript逆向爬虫——使用Python模拟执行JavaScript
22 2
|
2月前
|
数据采集 存储 JavaScript
构建您的第一个Python网络爬虫:抓取、解析与存储数据
【9月更文挑战第24天】在数字时代,数据是新的金矿。本文将引导您使用Python编写一个简单的网络爬虫,从互联网上自动抓取信息。我们将介绍如何使用requests库获取网页内容,BeautifulSoup进行HTML解析,以及如何将数据存储到文件或数据库中。无论您是数据分析师、研究人员还是对编程感兴趣的新手,这篇文章都将为您提供一个实用的入门指南。拿起键盘,让我们开始挖掘互联网的宝藏吧!
|
2月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
64 3
|
24天前
|
数据采集
爬虫案例—抓取找歌词网站的按歌词找歌名数据
爬虫案例—抓取找歌词网站的按歌词找歌名数据
41 0