异步爬虫实践攻略:利用Python Aiohttp框架实现高效数据抓取

简介: 本文介绍了如何使用Python的Aiohttp框架构建异步爬虫,以提升数据抓取效率。异步爬虫利用异步IO和协程技术,在等待响应时执行其他任务,提高效率。Aiohttp是一个高效的异步HTTP客户端/服务器框架,适合构建此类爬虫。文中还展示了如何通过代理访问HTTPS网页的示例代码,并以爬取微信公众号文章为例,说明了实际应用中的步骤。

在当今信息爆炸的时代,数据是无处不在且变化迅速的。为了从海量数据中获取有用的信息,异步爬虫技术应运而生,成为许多数据挖掘和分析工作的利器。本文将介绍如何利用Python Aiohttp框架实现高效数据抓取,让我们在信息的海洋中快速捕捉所需数据。
异步爬虫介绍
异步爬虫是指在进行数据抓取时能够实现异步IO操作的爬虫程序。传统的爬虫程序一般是同步阻塞的,即每次发送请求都需要等待响应返回后才能进行下一步操作,效率较低。而异步爬虫可以在发送请求后不阻塞等待响应,而是继续执行其他任务,从而提升了数据抓取效率。
Aiohttp框架介绍
Aiohttp是一个基于异步IO的HTTP客户端/服务器框架,专门用于处理HTTP请求和响应。它结合了Python的协程技术,提供了非常便捷的方式来实现异步HTTP请求。Aiohttp具有高效、灵活的特点,适合用于构建异步爬虫程序。
异步过程
在异步爬虫中,我们通常会用到异步IO、协程和事件循环等概念。异步IO是指在进行IO密集型任务时,能够在等待IO操作的过程中执行其他任务。而协程是一种轻量级的线程,可以在线程之间快速切换,实现并发执行。事件循环则是异步程序的控制中心,负责调度协程的执行。
一、环境配置
在开始之前,我们需要确保已经安装了Python和相关依赖库。通过以下命令安装Aiohttp和asyncio:
```pip install aiohttp
pip install asyncio

二、Aiohttp通过代理访问HTTPS网页
有时候我们需要通过代理来访问HTTPS网页。使用Aiohttp可以简便地实现这个需求,以下是一个示例代码:这段代码展示了如何利用Aiohttp通过代理访问HTTPS网页,从而让数据抓取更加灵活多样。
```import aiohttp

async def fetch(url, proxy):
    async with aiohttp.ClientSession() as session:
        connector = aiohttp.TCPConnector(limit=100, ssl=False)
        proxy_auth = aiohttp.BasicAuth(proxyUser, proxyPass)
        async with session.get(url, proxy=proxy, connector=connector, proxy_auth=proxy_auth) as response:
            return await response.text()

url = "https://example.com"
proxy = "http://www.16yun.cn:5445"

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

html = await fetch(url, proxy)
print(html)

三、异步协程方式通过代理访问HTTPS网页
除了简单的异步请求,我们还可以利用异步协程方式实现更高效的数据抓取。以下是一个示例代码:
```import aiohttp
import asyncio

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

async def fetch(url, session):
async with session.get(url) as response:
return await response.text()

async def main():
proxy = f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}/"
url = "https://example.com"

async with aiohttp.ClientSession() as session:
    html = await fetch(url, session)
    print(html)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

爬取案例(以微信公众号为案例)
我们以爬取微信公众号文章为例,演示如何利用 Python Aiohttp 框架实现高效数据抓取:
步骤:
1. 首先,我们需要获取微信公众号的历史文章列表接口,可以通过 Fiddler 等工具抓取相关请求。
2. 接下来,编写 Python 程序,利用 Aiohttp 发送异步请求获取历史文章列表数据。
```import aiohttp
import asyncio

async def fetch_article(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.json()

async def main():
    urls = ['https://api.weixin.qq.com/get_article_list', 'https://api.weixin.qq.com/get_article_list']
    tasks = [fetch_article(url) for url in urls]
    results = await asyncio.gather(*tasks)
    for result in results:
        print(result)

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8天前
|
数据采集 缓存 Java
代理服务器调试技巧:优化Kotlin网络爬虫的数据抓取过程
代理服务器调试技巧:优化Kotlin网络爬虫的数据抓取过程
|
3天前
|
机器学习/深度学习 分布式计算 数据处理
在Python中应用Spark框架
在Python中应用Spark框架
11 1
|
3天前
|
存储 设计模式 前端开发
Python Django框架总介绍
Python Django框架总介绍
8 0
|
3天前
|
开发框架 数据可视化 Java
探索Python的跨平台性:技术深度与实践
探索Python的跨平台性:技术深度与实践
|
4天前
|
存储 Python
Python中的函数与模块:核心概念与实践
Python中的函数与模块:核心概念与实践
|
4天前
|
存储 程序员 数据安全/隐私保护
Python面向对象编程:核心概念与实践
Python面向对象编程:核心概念与实践
|
4天前
|
测试技术 持续交付 数据处理
Python动态类型深度解析与实践
Python动态类型深度解析与实践
306 1
|
4天前
|
机器学习/深度学习 数据处理 算法框架/工具
Python库与框架的深入解析
Python中的库和框架扩展了其功能,提高了开发效率。库(如标准库os和第三方库requests)提供预定义的工具,而框架(如Web框架Flask和数据科学框架Scikit-learn)定义了应用结构和交互方式。通过库和框架,开发者能更专注于业务逻辑,快速构建Web应用和执行数据科学任务。
|
6天前
|
设计模式 缓存 前端开发
Python Django框架
Python Django框架
|
7天前
|
JSON JavaScript API
Python进阶---FastAPI框架
Python进阶---FastAPI框架
32 2