一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧

作为一名互联网技术爱好者,我对数据的探索充满热情。在本文中,我将以豆瓣读书为案例,详细介绍如何利用Python爬虫、Pandas和Excel这三大工具,一键化地实现数据采集和存储。豆瓣读书作为一个备受推崇的图书评价平台,拥有大量的书籍信息和用户评价数据,适合我们展示数据处理过程。
Pandas简介
在数据处理领域,Python中的Pandas库是一款备受欢迎的工具,它提供了高效的数据结构和数据分析工具,使得数据的处理变得更加简单、快速。主要的数据结构包括Series(一维数据)和DataFrame(二维数据表),这些数据结构为数据分析提供了基础。Pandas支持数据导入、数据清洗、数据操作和数据分析等功能,并且提供了丰富的数据可视化能力,让数据更具有可视化的魅力。
Python中Excel的作用
作为一款被广泛运用的办公软件,Excel在数据处理和分析领域同样扮演着重要的角色。在Python中,我们可以通过Pandas库将处理好的数据导出到Excel文件,从而方便更多人员查看和分析数据。Excel提供了众多功能,比如数据透视表、图表制作等,这些功能可以使数据展示更生动更具有说服力,帮助我们更好地呈现数据分析结果。
案例过程
Python爬虫实现豆瓣读书数据采集
首先,让我们从爬虫的角度出发,使用Python来实现对豆瓣读书网站的数据采集工作。通过发送HTTP请求,我们可以获取网页内容,接着利用Beautiful Soup库来解析页面结构,从而提取出我们需要的书籍信息,如书名、作者、评分和评论等。将这些数据存储为DataFrame结构,将会为后续的数据处理和分析提供便利。
```# 导入所需库
import requests
from bs4 import BeautifulSoup
import pandas as pd
import random

设置代理信息

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
"host": proxyHost,
"port": proxyPort,
"user": proxyUser,
"pass": proxyPass,
}

proxies = {
"http": proxyMeta,
"https": proxyMeta,
}

设置随机User-Agent

user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36 OPR/44.0.2510.1449",
"Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36",
]

headers = {
"User-Agent": random.choice(user_agents),
}

发起HTTP请求,获取网页内容

url = 'https://book.douban.com/top250?start=0'
response = requests.get(url, headers=headers, proxies=proxies)
soup = BeautifulSoup(response.text, 'html.parser')

解析页面内容,提取书籍信息

books = []
for item in soup.findall('tr', class='item'):
title = item.find('div', class='pl2').find('a').text.strip()
author = item.find('p', class
='pl').text.strip()
rating = item.find('span', class_='ratingnums').text.strip()
comments = item.find('span', class
='pl').text.strip()
books.append({'Title': title, 'Author': author, 'Rating': rating, 'Comments': comments})

将数据转化为DataFrame

df = pd.DataFrame(books)

打印输出结果

print(df)



Pandas的数据处理和分析
接下来,我们将导入爬取到的数据,运用Pandas库进行数据处理和分析。通过Pandas的强大功能,我们可以进行数据清洗、统计计算、数据筛选等操作。比如计算平均评分、统计评论数量等,这些数据分析结果将有助于我们更好地了解书籍情况和用户评价。

```# 数据清洗与分析
df['Rating'] = df['Rating'].astype(float)  # 将评分列转换为浮点型数据

# 统计平均评分和评论数量
average_rating = df['Rating'].mean()
comments_count = df['Comments'].count()

# 输出统计结果
print(f'平均评分:{average_rating}')
print(f'评论数量:{comments_count}')

利用Excel进行数据存储和展示
最后一步,我们将处理好的数据导出到Excel文件中,借助Excel的功能,我们可以轻松制作数据报表和图表,更加直观地展示数据分析结果。
# 导出数据至Excel df.to_excel('douban_books_data.xlsx', index=False)
在Excel中,我们可以通过多种图表类型来展示数据,如柱状图、折线图、饼图等,让数据更生动、更易于理解。这种可视化的展示形式不仅能更好地传达数据分析结果,也能让我们即时发现数据之间的关联和规律。
总结
通过以上的实例演示,我们深度探索了如何利用Python爬虫、Pandas和Excel这三大工具,实现数据的一键化采集、处理和展示。从爬取豆瓣读书数据,到利用Pandas进行数据清洗和分析,再到最终将结果导出到Excel中,全程贯穿着数据处理的完整流程。

相关文章
|
8天前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
20天前
|
数据采集 Web App开发 前端开发
处理动态Token:Python爬虫应对AJAX授权请求的策略
处理动态Token:Python爬虫应对AJAX授权请求的策略
|
20天前
|
数据采集 网络协议 API
协程+连接池:高并发Python爬虫的底层优化逻辑
协程+连接池:高并发Python爬虫的底层优化逻辑
|
29天前
|
数据采集 存储 Web App开发
处理Cookie和Session:让Python爬虫保持连贯的"身份"
处理Cookie和Session:让Python爬虫保持连贯的"身份"
|
1月前
|
数据采集 监控 Shell
无需Python:Shell脚本如何成为你的自动化爬虫引擎?
Shell脚本利用curl/wget发起请求,结合文本处理工具构建轻量级爬虫,支持并行加速、定时任务、增量抓取及分布式部署。通过随机UA、异常重试等优化提升稳定性,适用于日志监控、价格追踪等场景。相比Python,具备启动快、资源占用低的优势,适合嵌入式或老旧服务器环境,复杂任务可结合Python实现混合编程。
|
1月前
|
数据采集 存储 XML
Python爬虫入门(1)
在互联网时代,数据成为宝贵资源,Python凭借简洁语法和丰富库支持,成为编写网络爬虫的首选。本文介绍Python爬虫基础,涵盖请求发送、内容解析、数据存储等核心环节,并提供环境配置及实战示例,助你快速入门并掌握数据抓取技巧。
|
2月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
123 0
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
274 1
|
11月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
314 0
|
11月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
221 2

热门文章

最新文章

推荐镜像

更多