opencv基本操作
# -*- coding: utf-8 -*-
# Author: xurongzhong#126.com wechat:pythontesting qq:37391319
# 技术支持 钉钉群:21745728(可以加钉钉pythontesting邀请加入)
# qq群:144081101 591302926 567351477
# CreateDate: 2018-11-17
import imutils
import cv2
# 读取图片信息
image = cv2.imread("jp.png")
(h, w, d) = image.shape
print("width={}, height={}, depth={}".format(w, h, d))
# 显示图片
cv2.imshow("Image", image)
cv2.waitKey(0)
# 访问像素
(B, G, R) = image[100, 50]
print("R={}, G={}, B={}".format(R, G, B))
# 选取图片区间 ROI (Region of Interest)
roi = image[60:160, 320:420]
cv2.imshow("ROI", roi)
cv2.waitKey(0)
# 缩放
resized = cv2.resize(image, (200, 200))
cv2.imshow("Fixed Resizing", resized)
cv2.waitKey(0)
# 按比例缩放
r = 300.0 / w
dim = (300, int(h * r))
resized = cv2.resize(image, dim)
cv2.imshow("Aspect Ratio Resize", resized)
cv2.waitKey(0)
# 使用imutils缩放
resized = imutils.resize(image, width=300)
cv2.imshow("Imutils Resize", resized)
cv2.waitKey(0)
# 顺时针旋转45度
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -45, 1.0)
rotated = cv2.warpAffine(image, M, (w, h))
cv2.imshow("OpenCV Rotation", rotated)
cv2.waitKey(0)
# 使用imutils旋转
rotated = imutils.rotate(image, -45)
cv2.imshow("Imutils Rotation", rotated)
cv2.waitKey(0)
# 使用imutils无损旋转
rotated = imutils.rotate_bound(image, 45)
cv2.imshow("Imutils Bound Rotation", rotated)
cv2.waitKey(0)
# apply a Gaussian blur with a 11x11 kernel to the image to smooth it,
# useful when reducing high frequency noise 高斯模糊
# https://www.pyimagesearch.com/2016/07/25/convolutions-with-opencv-and-python/
blurred = cv2.GaussianBlur(image, (11, 11), 0)
cv2.imshow("Blurred", blurred)
cv2.waitKey(0)
# 画框
output = image.copy()
cv2.rectangle(output, (320, 60), (420, 160), (0, 0, 255), 2)
cv2.imshow("Rectangle", output)
cv2.waitKey(0)
# 画圆
output = image.copy()
cv2.circle(output, (300, 150), 20, (255, 0, 0), -1)
cv2.imshow("Circle", output)
cv2.waitKey(0)
# 划线
output = image.copy()
cv2.line(output, (60, 20), (400, 200), (0, 0, 255), 5)
cv2.imshow("Line", output)
cv2.waitKey(0)
# 输出文字
output = image.copy()
cv2.putText(output, "https://china-testing.github.io", (10, 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.imshow("Text", output)
cv2.waitKey(0)
原图:
选取图片区间 ROI (Region of Interest)
缩放
按比例缩放
旋转
使用imutils无损旋转
高斯模糊
画框
画圆
划线
输出文字
执行时的输出
$ python opencv_tutorial_01.py
width=600, height=322, depth=3
R=41, G=49, B=37
关于旋转这块,实际上pillow做的更好。比如同样逆时针旋转90度。
opencv的实现:
import imutils
import cv2
image = cv2.imread("jp.png")
rotated = imutils.rotate(image, 90)
cv2.imshow("Imutils Rotation", rotated)
cv2.waitKey(0)
pillow的实现:
from PIL import Image
im = Image.open("jp.png")
im2 = im.rotate(90, expand=True)
im2.show()
更多参考: python库介绍-图像处理工具pillow中文文档-手册(2018 5.*)
参考资料
- 技术支持qq群144081101(代码和模型存放)
- 本文最新版本地址
- 本文涉及的python测试开发库 谢谢点赞!
- 本文相关海量书籍下载
- 2018最佳人工智能机器学习工具书及下载(持续更新)
- 代码下载:https://itbooks.pipipan.com/fs/18113597-320636142
- 代码github地址:https://github.com/china-testing/python-api-tesing/tree/master/opencv_crash_deep_learning
识别俄罗斯方块
# -*- coding: utf-8 -*-
# Author: xurongzhong#126.com wechat:pythontesting qq:37391319
# 技术支持 钉钉群:21745728(可以加钉钉pythontesting邀请加入)
# qq群:144081101 591302926 567351477
# CreateDate: 2018-11-19
# python opencv_tutorial_02.py --image tetris_blocks.png
import argparse
import imutils
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
args = vars(ap.parse_args())
image = cv2.imread(args["image"])
cv2.imshow("Image", image)
cv2.waitKey(0)
# 转为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("Gray", gray)
cv2.waitKey(0)
# 边缘检测
edged = cv2.Canny(gray, 30, 150)
cv2.imshow("Edged", edged)
cv2.waitKey(0)
# 门限
thresh = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV)[1]
cv2.imshow("Thresh", thresh)
cv2.waitKey(0)
# 发现边缘
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
output = image.copy()
# loop over the contours
for c in cnts:
# draw each contour on the output image with a 3px thick purple
# outline, then display the output contours one at a time
cv2.drawContours(output, [c], -1, (240, 0, 159), 3)
cv2.imshow("Contours", output)
cv2.waitKey(0)
# draw the total number of contours found in purple
text = "I found {} objects!".format(len(cnts))
cv2.putText(output, text, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(240, 0, 159), 2)
cv2.imshow("Contours", output)
cv2.waitKey(0)
# we apply erosions to reduce the size of foreground objects
mask = thresh.copy()
mask = cv2.erode(mask, None, iterations=5)
cv2.imshow("Eroded", mask)
cv2.waitKey(0)
# 扩大
mask = thresh.copy()
mask = cv2.dilate(mask, None, iterations=5)
cv2.imshow("Dilated", mask)
cv2.waitKey(0)
# a typical operation we may want to apply is to take our mask and
# apply a bitwise AND to our input image, keeping only the masked
# regions
mask = thresh.copy()
output = cv2.bitwise_and(image, image, mask=mask)
cv2.imshow("Output", output)
cv2.waitKey(0)
原图和灰度图:
边缘检测
门限
轮廓
查找结果
腐蚀和扩张
屏蔽和位操作
串在一起执行
$ python opencv_tutorial_02.py --image tetris_blocks.png