Python 数据库骚操作 -- MongoDB

本文涉及的产品
云数据库 MongoDB,通用型 2核4GB
简介:
+关注继续查看

 ●  前言

 ●  MongoDB GUI 工具
 ●  PyMongo(同步)
 ●  Motor(异步)

 ●  后记

前言

最近这几天准备介绍一下 Python 与三大数据库的使用,这是第一篇,首先来介绍 MongoDB 吧,这里介绍 MongoDB 的两款操作库,走起!!

MongoDB GUI 工具

首先介绍一款 MongoDB 的 GUI 工具 Robo 3T,初学 MongoDB 用这个来查看数据真的很爽。可以即时看到数据的增删改查,不用操作命令行来查看。

37790004bf23d7e07bf0981bb46d7b991903d173

操作界面图PyMongo(同步)

PyMongo 是一个同步操作的数据存储库。可能大家都对 PyMongo 比较熟悉了,这里就简单介绍它的增删改查等操作。

连接


# 普通连接
client = MongoClient('localhost', 27017)
client = MongoClient('mongodb://localhost:27017/')
#
# 密码连接
client = MongoClient('mongodb://username:password@localhost:27017/dbname')
db = client.zfdb
# db = client['zfdb']

test = db.test

# 增加一条记录
person = {'name': 'zone','sex':'boy'}
person_id = test.insert_one(person).inserted_id
print(person_id)

# 批量插入
persons = [{'name': 'zone', 'sex': 'boy'}, {'name': 'zone1', 'sex': 'boy1'}]
result = test.insert_many(persons)
print(result.inserted_ids)

# 删除单条记录
result1 = test.delete_one({'name': 'zone'})
pprint.pprint(result1)

# 批量删除
result1 = test.delete_many({'name': 'zone'})
pprint.pprint(result1)

# 更新单条记录
res = test.update_one({'name': 'zone'}, {'$set': {'sex': 'girl girl'}})
print(res.matched_count)

# 更新多条记录
test.update_many({'name': 'zone'}, {'$set': {'sex': 'girl girl'}})

# 查找多条记录
pprint.pprint(test.find())

# 添加查找条件
pprint.pprint(test.find({"sex": "boy"}).sort("name"))
聚合

如果你是我的老读者,那么你肯定知道我之前的骚操作,就是用爬虫爬去数据之后,用聚合统计结合可视化图表进行数据展示。


aggs = [
{"$match": {"$or" : [{"field1": {"$regex": "regex_str"}}, {"field2": {"$regex": "regex_str"}}]}}, # 正则匹配字段
{"$project": {"field3":1, "field4":1}},# 筛选字段
{"$group": {"_id": {"field3": "$field3", "field4":"$field4"}, "count": {"$sum": 1}}}, # 聚合操作
]

result = test.aggregate(pipeline=aggs)

例子:以分组的方式统计 sex 这个关键词出现的次数,说白了就是统计有多少个男性,多少个女性。

test.aggregate([{'$group': {'_id': '$sex', 'weight': {'$sum': 1}}}])

聚合效果图:(秋招季,用Python分析深圳程序员工资有多高?
)文章配图)

24173ee40aa96ba5427bf6974122ea5957708918

Motor(异步)

Motor 是一个异步实现的 MongoDB 存储库 Motor 与 Pymongo 的配置基本类似。连接对象就由 MongoClient 变为 AsyncIOMotorClient 了。下面进行详细介绍一下。

连接


# 普通连接
client = motor.motor_asyncio.AsyncIOMotorClient('mongodb://localhost:27017')
# 副本集连接
client = motor.motor_asyncio.AsyncIOMotorClient('mongodb://host1,host2/?replicaSet=my-replicaset-name')
# 密码连接
client = motor.motor_asyncio.AsyncIOMotorClient('mongodb://username:password@localhost:27017/dbname')
# 获取数据库
db = client.zfdb
# db = client['zfdb']
# 获取 collection
collection = db.test
# collection = db['test']

增加一条记录

添加一条记录。


async def do_insert():
document = {'name': 'zone','sex':'boy'}
result = await db.test_collection.insert_one(document)
print('result %s' % repr(result.inserted_id))
loop = asyncio.get_event_loop()
loop.run_until_complete(do_insert())

61a736fcaf07637bfcfb0d2903a636da3c9e6960

批量增加记录

添加结果如图所暗示。


async def do_insert():
result = await db.test_collection.insert_many(
[{'name': i, 'sex': str(i + 2)} for i in range(20)])
print('inserted %d docs' % (len(result.inserted_ids),))

loop = asyncio.get_event_loop()
loop.run_until_complete(do_insert())
查找一条记录

async def do_find_one():
document = await db.test_collection.find_one({'name': 'zone'})
pprint.pprint(document)

loop = asyncio.get_event_loop()
loop.run_until_complete(do_find_one())

1470730b7780205d623dfa1e1c8e98b16f3dc7ab

查找多条记录

查找记录可以添加筛选条件。


async def do_find():
cursor = db.test_collection.find({'name': {'$lt': 5}}).sort('i')
for document in await cursor.to_list(length=100):
pprint.pprint(document)

loop = asyncio.get_event_loop()
loop.run_until_complete(do_find())

# 添加筛选条件,排序、跳过、限制返回结果数
async def do_find():
cursor = db.test_collection.find({'name': {'$lt': 4}})
# Modify the query before iterating
cursor.sort('name', -1).skip(1).limit(2)
async for document in cursor:
pprint.pprint(document)

loop = asyncio.get_event_loop()
loop.run_until_complete(do_find())
6428b73a7318e4dadca7586a7925be1587d33f61
统计

async def do_count():
n = await db.test_collection.count_documents({})
print('%s documents in collection' % n)
n = await db.test_collection.count_documents({'name': {'$gt': 1000}})
print('%s documents where i > 1000' % n)

loop = asyncio.get_event_loop()
loop.run_until_complete(do_count())

7070ac4f245f2f6e8702c94253d5fdcee051f54f
替换

替换则是将除 id 以外的其他内容全部替换掉。


async def do_replace():
coll = db.test_collection
old_document = await coll.find_one({'name': 'zone'})
print('found document: %s' % pprint.pformat(old_document))
_id = old_document['_id']
result = await coll.replace_one({'_id': _id}, {'sex': 'hanson boy'})
print('replaced %s document' % result.modified_count)
new_document = await coll.find_one({'_id': _id})
print('document is now %s' % pprint.pformat(new_document))

loop = asyncio.get_event_loop()
loop.run_until_complete(do_replace())

0c574545742a3a97efce09f37fc78bba2d2d8b38

更新

更新指定字段,不会影响到其他内容。


async def do_update():
coll = db.test_collection
result = await coll.update_one({'name': 0}, {'$set': {'sex': 'girl'}})
print('更新条数: %s ' % result.modified_count)
new_document = await coll.find_one({'name': 0})
print('更新结果为: %s' % pprint.pformat(new_document))

loop = asyncio.get_event_loop()
loop.run_until_complete(do_update())
684836e5d6e1d7687f9352c9128979d26b86cfee
删除

删除指定记录。


async def do_delete_many():
coll = db.test_collection
n = await coll.count_documents({})
print('删除前有 %s 条数据' % n)
result = await db.test_collection.delete_many({'name': {'$gte': 10}})
print('删除后 %s ' % (await coll.count_documents({})))

loop = asyncio.get_event_loop()
loop.run_until_complete(do_delete_many())
f3be9ca11387141ebfca1355225cccc492a25303


原文发布时间为:2018-11-10
本文作者:zone7
本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1天前
|
关系型数据库 数据挖掘 数据库连接
Python数据分析中的数据库连接的基本操作,轻松完成与数据库的交互
Python数据分析中的数据库连接的基本操作,轻松完成与数据库的交互
11 0
|
1天前
|
SQL JSON 关系型数据库
Python 使用SQLAlchemy数据库模块
SQLAlchemy 是用Python编程语言开发的一个开源项目,它提供了SQL工具包和ORM对象关系映射工具,使用MIT许可证发行,SQLAlchemy 提供高效和高性能的数据库访问,实现了完整的企业级持久模型。ORM(对象关系映射)是一种编程模式,用于将对象与关系型数据库中的表和记录进行映射,从而实现通过面向对象的方式进行数据库操作。ORM 的目标是在编程语言中使用类似于面向对象编程的语法,而不是使用传统的 SQL 查询语言,来操作数据库。
|
25天前
|
关系型数据库 数据库 Python
Python连接DB2数据库
Python连接DB2数据库
|
2月前
|
存储 NoSQL MongoDB
Python使用MongoDB数据库
Python使用MongoDB数据库
|
2月前
|
数据可视化 关系型数据库 数据库
学生成绩管理系统(Python+数据库) 2
学生成绩管理系统(Python+数据库)
44 0
|
2月前
|
SQL 关系型数据库 MySQL
学生成绩管理系统(Python+数据库) 1
学生成绩管理系统(Python+数据库)
71 0
|
2月前
|
SQL 关系型数据库 数据库连接
【100天精通python】Day34:使用python操作数据库_ORM(SQLAlchemy)使用
【100天精通python】Day34:使用python操作数据库_ORM(SQLAlchemy)使用
17 0
|
2月前
|
SQL 存储 数据库
【100天精通python】Day33:使用python操作数据库_SQLite数据库的使用与实战
【100天精通python】Day33:使用python操作数据库_SQLite数据库的使用与实战
28 0
|
2月前
|
关系型数据库 MySQL 数据库
【100天精通python】Day32:使用python操作数据库_MySQL下载、安装、配置、使用实战
【100天精通python】Day32:使用python操作数据库_MySQL下载、安装、配置、使用实战
27 0
|
2月前
|
SQL 关系型数据库 数据库连接
【100天精通python】Day31:使用python操作数据库_数据库编程接口,连接对象和游标对象,数据库连接配置
【100天精通python】Day31:使用python操作数据库_数据库编程接口,连接对象和游标对象,数据库连接配置
36 0
推荐文章
更多