MySQL的索引原理与查询优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 一、MySQL 索引简介1、 MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车。

一、MySQL 索引简介

1、 MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。

打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车。

2、索引分单列索引和组合索引。
  • 单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引。
  • 组合索引,即一个索引包含多个列。
3、索引的详细分类:
  1. 普通索引index :加速查找
  2. 唯一索引
    • 主键索引:primary key :加速查找+约束(不为空且唯一)
    • 唯一索引:unique:加速查找+约束 (唯一)
  3. 联合索引
    • primary key(id,name):联合主键索引
    • unique(id,name):联合唯一索引
    • index(id,name):联合普通索引
  4. 全文索引fulltext :用于搜索很长一篇文章的时候,效果最好。
  5. 空间索引spatial :了解就好,几乎不用
4、创建索引时,你需要确保该索引是应用在 SQL 查询语句的条件(一般作为 WHERE 子句的条件)。

实际上,索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录。

5、索引的两大类型hash与btree
  1. 我们可以在创建上述索引的时候,为其指定索引类型,分两类
  • hash类型的索引:查询单条快,范围查询慢
  • btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)

2、不同的存储引擎支持的索引类型也不一样

  • InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
  • MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
  • Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
  • NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
  • Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
6、滥用索引的缺点:
  • 第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

  • 第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。

  • 第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

创建UNIQUE | FULLTEXT | SPATIAL 一样的方法

方法一:创建表时创建索引

CREATE TABLE mytable(  
    ID INT NOT NULL,   
    username VARCHAR(16) NOT NULL,  
   [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY  [indexName] (username(length))   
);  

方法二:CREATE在已存在的表上创建索引

CREATE [UNIQUE | FULLTEXT | SPATIAL | INDEX ]  indexName ON mytable(username(length)); 

方式三:修改表结构(添加索引)

ALTER table tableName ADD  [UNIQUE | FULLTEXT | SPATIAL | INDEX ] indexName(columnName)

删除索引的语法

DROP INDEX [indexName] ON mytable; 

三、实测索引的功效

1. 前期准备工作

  • 创建一个名为text的数据库:
create database text charset utf8;
  • 创建一张名为text的数据表
create table text(id int,name varchar(20))
  • 通过创建存储过程,实现批量插入记录(大约需要半小时时间)
delimiter $$ #声明存储过程的结束符号为$$
create procedure insertinfo()
BEGIN
    declare i int default 1;
    while(i<1000000)do
        insert into text values(i,concat('wangjifei',i));
        set i=i+1;
    end while;
END $$ 
delimiter ; #重新声明分号为结束符号为;
  • 查看存储过程
 show create procedure insertinfo\G 
  • 调用存储过程
 call insertinfo();

2、在没有索引的前提下测试查询速度

mysql> select * from text where id = 1234;
+------+---------------+
| id   | name          |
+------+---------------+
| 1234 | wangjifei1234 |
+------+---------------+
1 row in set (0.39 sec)
mysql> select * from text where name = 'wangjifei12345';
+-------+----------------+
| id    | name           |
+-------+----------------+
| 12345 | wangjifei12345 |
+-------+----------------+
1 row in set (0.53 sec)

3、加上索引

//1. 一定是为搜索条件的字段创建索引,比如select * from t1 where age > 5;就需要为age加上索引
//2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快
//比如create index myname on text(name);会扫描表中所有的数据,然后以name为数据项,
//创建索引结构,存放于硬盘的表中。建完以后,再查询就会很快了

//给name加上普通索引
mysql> create index myname on text(name);
Query OK, 0 rows affected (18.31 sec)
Records: 0  Duplicates: 0  Warnings: 0

//给id加上唯一索引
mysql> create unique index myid on text(id);
Query OK, 0 rows affected (10.83 sec)
Records: 0  Duplicates: 0  Warnings: 0
效果立竿见影,查询速度翻了几十倍
mysql> select * from text where id = 1234;
+------+---------------+
| id   | name          |
+------+---------------+
| 1234 | wangjifei1234 |
+------+---------------+
1 row in set (0.00 sec)
mysql> select * from text where name = 'wangjifei12345';
+-------+----------------+
| id    | name           |
+-------+----------------+
| 12345 | wangjifei12345 |
+-------+----------------+
1 row in set (0.01 sec)
mysql> select * from text where name = 'wangjifei823458';
+--------+-----------------+
| id     | name            |
+--------+-----------------+
| 823458 | wangjifei823458 |
+--------+-----------------+
1 row in set (0.00 sec)

四、批量添加测试数据的方法:

  • 通过存储过程批量创建数据
1. 创建存储过程
delimiter $$ #声明存储过程的结束符号为$$
create procedure insertinfo()
BEGIN
   declare i int default 1;
   while(i<1000000)do
       insert into text values(i,concat('wangjifei',i));
       set i=i+1;
   end while;
END $$ 
delimiter ; #重新声明分号为结束符号为;

2. 查看存储过程
show create procedure insertinfo\G;

3. 调用存储过程
call insertinfo();

五、正确使用索引

  • 覆盖索引
    select * from text where name = 'wangjifei882345';
    该sql命中了索引,但未覆盖索引。利用name = 'wangjifei882345'到索引的数据结构中定位到该name在硬盘中的位置,或者说再数据表中的位置。

    但是我们select的字段为*,除了name以外还需要其他字段,这就意味着,我们通过索引结构取到name还不够,还需要利用该name再去找到该name所在行的其他字段值,这是需要时间的,

    很明显,如果我们只select name,就减去了这份苦恼,如下select name from text where name = 'wangjifei882345';这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了name在硬盘的地址,速度很快

mysql> select name from text where name = 'wangjifei882345';
+-----------------+
| name            |
+-----------------+
| wangjifei882345 |
+-----------------+
1 row in set (0.00 sec)
  • 联合索引
    为了增加效果对比,在创建联合索引前将之前创建的普通索引删除掉了
mysql> select * from text where id = 2435353252 and name = 'wangjifei123333';
Empty set (0.58 sec)  //普通查询

mysql> create index idname on text(id,name); //创建联合索引
Query OK, 0 rows affected (26.86 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from text where id = 2435353252 and name = 'wangjifei123333'; 
Empty set (0.00 sec)  // 联合索引查询
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
14天前
|
自然语言处理 搜索推荐 关系型数据库
MySQL实现文档全文搜索,分词匹配多段落重排展示,知识库搜索原理分享
本文介绍了在文档管理系统中实现高效全文搜索的方案。为解决原有ES搜索引擎私有化部署复杂、运维成本高的问题,我们转而使用MySQL实现搜索功能。通过对用户输入预处理、数据库模糊匹配、结果分段与关键字标红等步骤,实现了精准且高效的搜索效果。目前方案适用于中小企业,未来将根据需求优化并可能重新引入专业搜索引擎以提升性能。
|
1月前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
26天前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
84 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
1月前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
1月前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
1月前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
1月前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
|
2月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
1月前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
175 42
|
4天前
|
SQL 关系型数据库 MySQL
MySQL生产环境迁移至YashanDB数据库深度体验
这篇文章是作者将 MySQL 生产环境迁移至 YashanDB 数据库的深度体验。介绍了 YashanDB 迁移平台 YMP 的产品相关信息、安装步骤、迁移中遇到的各种兼容问题及解决方案,最后总结了迁移体验,包括工具部署和操作特点,也指出功能有优化空间及暂不支持的部分,期待其不断优化。