差异分析③

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 统计差异基因数目tfit
  • 统计差异基因数目
tfit <- treat(vfit, lfc=1)
dt <- decideTests(tfit)
summary(dt)
        BasalvsLP BasalvsML LPvsML
Down        1417      1512    203
NotSig     11030     10895  13780
Up          1718      1758    182

一些研究需要不止一个调整后的p值cutoff值。 为了对重要性进行更严格的定义,可能需要log-fold-change(log-FC)超过最小值。 一般用来计算经验贝叶斯慢化t-统计的p值,并具有最小的log-FC要求。

  • 保存文件

de.common <- which(dt[,1]!=0 & dt[,2]!=0)
length(de.common)


vennDiagram(dt[,1:2], circle.col=c("turquoise", "salmon"))
write.fit(tfit, dt, file="results.txt")
#使用topTreat输出差异基因信息
#The top DE genes can be listed using topTreat for results using treat
# (or topTable for results using eBayes). 
#By default topTreat arranges genes from smallest to largest adjusted p-value with associated gene information, 
#log-FC, average log-CPM, moderated t-statistic, 
#raw and adjusted p-value for each gene. 
#The number of top genes displayed can be specified, where n=Inf includes all genes. 
basal.vs.lp <- topTreat(tfit, coef=1, n=Inf)
basal.vs.ml <- topTreat(tfit, coef=2, n=Inf)
head(basal.vs.lp)

img_17452db5ab8109ce71f53edf63952ba8.png

维恩图显示仅比较基础与仅LP(左),基础与仅ML(右)之间比较基因DE的数量,以及两个比较(中心)中DE的基因数目。 任何比较中不是DE的基因的数目标记在右下角。

  • 差异基因可视化

为了总结目测所有基因的结果,可以使用plotMD函数生成显示来自线性模型的log-FC与平均对数-CPM值拟合的均值 - 差异图,其中突出显示差异表达的基因。

plotMD(tfit, column=1, status=dt[,1],
       main=colnames(tfit)[1], 
       xlim=c(-8,13))
img_31ac44b50451211d7243a33cd3a56e92.png
  • 使用Glimma生成交互式均值差分图。

log-FC与log-CPM值显示在左侧面板中,与右侧面板中选定基因的每个样品的单个值相关。 结果表也显示在这些图下方,以及搜索栏以允许用户使用可用的注释信息来查找特定的基因。

glMDPlot(tfit, coef=1, status=dt,
         main=colnames(tfit)[1],
         side.main="ENTREZID",
         counts=x$counts,
         groups=group, launch=T)
img_83a972c4e6158518aca68eea2ecb93bb.png
  • 热图

使用来自gplots软件包的heatmap.2函数,从基础对比LP对比度的顶部100个DE基因(按调整的p值排列)创建热图。热图将样品按细胞类型正确聚类,并将基因重新排列成具有相似表达模式的区块。从热图中,我们观察到ML和LP样品的表达对于基础和LP之间的前100个DE基因非常相似。


library(gplots)
basal.vs.lp.topgenes <- basal.vs.lp$ENTREZID[1:100]
i <- which(v$genes$ENTREZID %in% basal.vs.lp.topgenes)
mycol <- colorpanel(1000,"blue","white","red")
heatmap.2(v$E[i,], scale="row",
          labRow=v$genes$SYMBOL[i], labCol=group,
          col=mycol, trace="none", density.info="none", 
          margin=c(8,6), lhei=c(2,10), dendrogram="column")


img_0132877462f1d86528b539ec79714255.png
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
6天前
|
传感器 存储 索引
如何解决 analogRead()函数读取到的模拟值不准确的问题
在使用analogRead()函数时,若读取到的模拟值不准确,可以通过校准ADC、增加采样次数取平均值、使用外部参考电压或检查电路连接等方式来提高读取精度。
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
|
5月前
|
算法 数据挖掘 数据处理
数据分析之可重复与独立样本的T-Test分析
数据分析之可重复与独立样本的T-Test分析
38 2
|
数据采集 机器学习/深度学习 算法
②数据预处理之数据清理,数据集成,数据规约,数据变化和离散化
数据预处理之数据清理,数据集成,数据规约,数据变化和离散化
795 0
②数据预处理之数据清理,数据集成,数据规约,数据变化和离散化
|
6月前
|
JavaScript 前端开发
v-if 和 v-show 的差异及最优使用场景
v-if和v-show都是Vue.js中的条件渲染指令,它们都可以根据表达式的值来决定是否渲染一个元素。但是它们的工作方式不同,因此在使用上也有一些区别。
|
算法 安全 机器人
算法提高:计算几何基础 | 判断包含关系
计算几何是计算机科学的一个重要分支,主要研究几何形体的数学描述和计算机描述,在现代工程和数学领域,以及计算机辅助设计、地理信息系统、图形学、机器人技术、超大规模集成电路设计和统计等诸多领域都有重要的用途。在 ACM 竞赛中,出题相对独立,曾出现过与图论、动态规划相结合的题,大多数计算几何问题用程序实现都比较复杂。常用算法包括经典的凸包求解、离散化及扫描线算法、旋转卡壳、半平面交等。本文介绍计算几何常用算法——包含关系。
159 0
|
算法 Go
差异分析|DESeq2完成配对样本的差异分析
差异分析|DESeq2完成配对样本的差异分析
419 0
差异分析|DESeq2完成配对样本的差异分析
|
机器学习/深度学习 算法 计算机视觉
舌体胖瘦的自动分析-曲线拟合-或许是最简单判断舌形的方案(六)
舌体胖瘦的自动分析-曲线拟合-或许是最简单判断舌形的方案(六)
137 0
|
数据采集 机器学习/深度学习 自然语言处理
实现文本数据数值化、方便后续进行回归分析等目的,需要对文本数据进行多标签分类和关系抽取
实现文本数据数值化、方便后续进行回归分析等目的,需要对文本数据进行多标签分类和关系抽取
195 0
|
PHP
php清洗数据实战案例(4):按照关联数组相同值名称进行筛选后对不同的指标予以合并计算的解决方案
php清洗数据实战案例(4):按照关联数组相同值名称进行筛选后对不同的指标予以合并计算的解决方案
65 0