pandas VS baseR

简介: import numpy as npimport pandas as pd创建DataFrameIn [2]:df = pd.DataFrame({'col_a': np.
import numpy as np
import pandas as pd

创建DataFrame

In [2]:
df = pd.DataFrame({'col_a': np.arange(10), 
                   'col_b': np.random.randn(10), 
                   'col_c': np.random.choice(['A', 'B', 'C'], 10), 
                   'col_d': np.random.choice([0, 1], 10)})
df.head(5)

# R code:
# df <- data.frame(col_a = 0:9,
#                  col_b = rnorm(10),
#                  col_c = sample(c('A', 'B', 'C'), size = 10, replace = TRUE),
#                  col_d = sample(c(0, 1), size = 10, replace = TRUE), 
#                  stringsAsFactors = FALSE)
# head(df, 5)
Out[2]:
col_a   col_b   col_c   col_d
0   0   0.308520    C   1
1   1   -1.829450   B   1
2   2   -0.710135   C   0
3   3   1.354760    A   0
4   4   -0.581359   A   1

获取DataFrame维度

In [3]:
print(df.shape, df.shape[0], df.shape[1])

# R code:
# dim(df), rnow(df), ncol(df)

(10, 4) 10 4

获取DataFrame列名

In [4]:
df.columns

# R code:
# names(df)
Out[4]:
Index(['col_a', 'col_b', 'col_c', 'col_d'], dtype='object')

数据选取

In [5]:
# 选取前5行数据
df.iloc[:5]

# R code:
# df[1:5, ]
Out[5]:
col_a   col_b   col_c   col_d
0   0   0.308520    C   1
1   1   -1.829450   B   1
2   2   -0.710135   C   0
3   3   1.354760    A   0
4   4   -0.581359   A   1
# 选取col_a和col_b列
df[['col_a', 'col_b']]

# R code:
# df[, c('col_a', 'col_b')]
Out[6]:
col_a   col_b
0   0   0.308520
1   1   -1.829450
2   2   -0.710135
3   3   1.354760
4   4   -0.581359
5   5   1.633542
6   6   -0.253950
7   7   1.799087
8   8   0.412991
9   9   0.374330
# 选取前5行和前2列
df.iloc[:5, :2]

# R code:
# df[1:5, 1:2]
Out[7]:
col_a   col_b
0   0   0.308520
1   1   -1.829450
2   2   -0.710135
3   3   1.354760
4   4   -0.581359
# 选取单个值(scalar)
df.iat[0, 1]

# R code:
# df[1, 2]
Out[8]:
0.3085196186883713

按条件选取数据

In [9]:
df[(df['col_a'] > 3) & (df['col_b'] < 0)]
# or 
# df.query('col_a > 3 & col_b < 0')

# R code:
# df[df$col_a > 3 & df$col_b < 0, ]
Out[9]:
col_a   col_b   col_c   col_d
4   4   -0.581359   A   1
6   6   -0.253950   B   1
In [10]:
df[df['col_c'].isin(['A', 'B'])]

# R code:
# df[df$col_c %in% c('A', 'B'), ]
Out[10]:
col_a   col_b   col_c   col_d
1   1   -1.829450   B   1
3   3   1.354760    A   0
4   4   -0.581359   A   1
5   5   1.633542    B   1
6   6   -0.253950   B   1
7   7   1.799087    A   1
9   9   0.374330    A   0

增加新列

In [11]:
df['col_e'] = df['col_a'] + df['col_b']
df

# df$col_e <- df$col_a + df$col_b
Out[11]:
col_a   col_b   col_c   col_d   col_e
0   0   0.308520    C   1   0.308520
1   1   -1.829450   B   1   -0.829450
2   2   -0.710135   C   0   1.289865
3   3   1.354760    A   0   4.354760
4   4   -0.581359   A   1   3.418641
5   5   1.633542    B   1   6.633542
6   6   -0.253950   B   1   5.746050
7   7   1.799087    A   1   8.799087
8   8   0.412991    C   0   8.412991
9   9   0.374330    A   0   9.374330

删除列

In [12]:
# 删除col_e列
df = df.drop(columns='col_e')
df

# R code:
# df <- df[, !names(df) == 'col_e']
Out[12]:
col_a   col_b   col_c   col_d
0   0   0.308520    C   1
1   1   -1.829450   B   1
2   2   -0.710135   C   0
3   3   1.354760    A   0
4   4   -0.581359   A   1
5   5   1.633542    B   1
6   6   -0.253950   B   1
7   7   1.799087    A   1
8   8   0.412991    C   0
9   9   0.374330    A   0
In [13]:
# 删除第一列
df.drop(columns=df.columns[0])

# R code:
# df[, -1]
Out[13]:
col_b   col_c   col_d
0   0.308520    C   1
1   -1.829450   B   1
2   -0.710135   C   0
3   1.354760    A   0
4   -0.581359   A   1
5   1.633542    B   1
6   -0.253950   B   1
7   1.799087    A   1
8   0.412991    C   0
9   0.374330    A   0

转置

In [14]:
df.T

# R code:
# t(df)
Out[14]:
0   1   2   3   4   5   6   7   8   9
col_a   0   1   2   3   4   5   6   7   8   9
col_b   0.30852 -1.82945    -0.710135   1.35476 -0.581359   1.63354 -0.25395    1.79909 0.412991    0.37433
col_c   C   B   C   A   A   B   B   A   C   A
col_d   1   1   0   0   1   1   1   1   0   0

数据类型转换

In [15]:
df['col_a'].astype(str)

# as.character(df$col_a)
Out[15]:
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
Name: col_a, dtype: object

转换为类别(categories)/因子(factor)类型

In [16]:
pd.Categorical(df['col_c'])

# factor(df$col_d)
Out[16]:
[C, B, C, A, A, B, B, A, C, A]
Categories (3, object): [A, B, C]

数据汇总
按行进行计算

In [17]:
df[['col_a', 'col_b']].sum(axis=1)

# R code:
# apply(df[, c('col_a', 'col_b')], 1, sum)
Out[17]:
0    0.308520
1   -0.829450
2    1.289865
3    4.354760
4    3.418641
5    6.633542
6    5.746050
7    8.799087
8    8.412991
9    9.374330
dtype: float64

按列进行计算

In [18]:
df[['col_a', 'col_b']].mean(axis=0)

# R code:
# apply(df[, c('col_a', 'col_b')], 2, mean)
Out[18]:
col_a    4.500000
col_b    0.250834
dtype: float64
In [19]:
df[['col_a', 'col_b']].apply(lambda x: x.mean() + 10)

# R code:
# apply(df[, c('col_a', 'col_b')], 2, function(x) mean(x) + 10)
Out[19]:
col_a    14.500000
col_b    10.250834
dtype: float64

数据合并
合并列

In [20]:
df2 = pd.DataFrame({'col_x': np.arange(10), 
                    'col_y': np.arange(10)[::-1]})
df2
Out[20]:
col_x   col_y
0   0   9
1   1   8
2   2   7
3   3   6
4   4   5
5   5   4
6   6   3
7   7   2
8   8   1
9   9   0
In [21]:
pd.concat([df, df2], axis=1)


# R code:
# cbind(df, df2)
Out[21]:
col_a   col_b   col_c   col_d   col_x   col_y
0   0   0.308520    C   1   0   9
1   1   -1.829450   B   1   1   8
2   2   -0.710135   C   0   2   7
3   3   1.354760    A   0   3   6
4   4   -0.581359   A   1   4   5
5   5   1.633542    B   1   5   4
6   6   -0.253950   B   1   6   3
7   7   1.799087    A   1   7   2
8   8   0.412991    C   0   8   1
9   9   0.374330    A   0   9   0

合并行

In [22]:
df3 = pd.DataFrame({'col_a': [-1, -2], 
                    'col_b' : [0, 1], 
                    'col_c': ['B', 'C'], 
                    'col_d': [1, 0]})
df3
Out[22]:
col_a   col_b   col_c   col_d
0   -1  0   B   1
1   -2  1   C   0
In [23]:
pd.concat([df, df3], axis=0, ignore_index=True)

# R code:
# rbind(df, df3)
Out[23]:
col_a   col_b   col_c   col_d
0   0   0.308520    C   1
1   1   -1.829450   B   1
2   2   -0.710135   C   0
3   3   1.354760    A   0
4   4   -0.581359   A   1
5   5   1.633542    B   1
6   6   -0.253950   B   1
7   7   1.799087    A   1
8   8   0.412991    C   0
9   9   0.374330    A   0
10  -1  0.000000    B   1
11  -2  1.000000    C   0
目录
相关文章
|
3月前
|
数据挖掘 数据处理 C++
Pandas VS Polars:迅如闪电的全新体验
Pandas VS Polars:迅如闪电的全新体验
94 1
|
机器学习/深度学习 关系型数据库 数据挖掘
Pandas 2.0 vs Polars:速度的全面对比
前几天的文章,我们已经简单的介绍过Pandas 和Polars的速度对比。刚刚发布的Pandas 2.0速度得到了显著的提升。但是本次测试发现NumPy数组上的一些基本操作仍然更快。并且Polars 0.17.0,也在上周发布,并且也提到了性能的改善,所以我们这里做一个更详细的关于速度方面的评测。
311 0
Pandas 2.0 vs Polars:速度的全面对比
|
SQL 分布式计算 Scala
Pandas vs Spark:获取指定列的N种方式
本篇继续Pandas与Spark常用操作对比系列,针对常用到的获取指定列的多种实现做以对比。 注:此处的Pandas特指DataFrame数据结构,Spark特指spark.sql下的DataFrame数据结构。
628 0
Pandas vs Spark:获取指定列的N种方式
|
存储 分布式计算 文字识别
Pandas vs Spark:数据读取篇
按照前文所述,本篇开始Pandas和Spark常用数据处理方法对比系列。数据处理的第一个环节当然是数据读取,所以本文就围绕两个框架常用的数据读取方法做以介绍和对比。
366 0
Pandas vs Spark:数据读取篇
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
103 0
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
45 2
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
98 3
|
2月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
47 1
|
3月前
|
机器学习/深度学习 数据采集 监控
Pandas与Matplotlib:Python中的动态数据可视化
Pandas与Matplotlib:Python中的动态数据可视化
下一篇
DataWorks