Python3入门机器学习 - 梯度下降法

简介: 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。

模拟实现梯度下降法


def DJ(theta):      //计算损失函数J的斜率
    return 2*(theta-2.5)
def J(theta):        //损失函数J,使用梯度下降法 求该函数极小值
    return (theta-2.5)**2+1
theta = 0.0
eta = 0.1
epsilon = 1e-8
theta_history = [theta]

while True:
    gradient = DJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    theta_history.append(theta)
    if(abs(J(theta) - J(last_theta))<epsilon):
        break

pyplot.plot(plot_x,plot_y)
pyplot.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
img_acdd1700a150b18d152f8c8c784c1a89.png
梯度下降法应用于线性回归算法
    def fit_gd(self,X_train,y_train,eta=0.01,n_iters=1e6):
        def J(theta,X_b,y):
            try:
                return np.sum((y-X_b.dot(theta))**2)/len(y)
            except:
                return float("inf")
        def dJ(theta,X_b,y):
            # res = np.empty()
            # res[0] = np.sum(X_b.dot(theta)-y)
            # for i in range(1,len(theta)):
            #     res[i] = (X_b.dot(theta)-y).dot(X_b[:,i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(X_b.dot(theta)-y)*2./len(X_b)
        def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e6,epsilon=1e-8):
            theta = initial_theta
            cur_iter = 0
            while cur_iter<n_iters:
                gradient = dJ(theta,X_b,y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta,X_b,y) - J(last_theta,X_b,y)) < epsilon):
                    break
                cur_iter+=1
            return theta
        X_b = np.hstack([np.ones((len(X_train),1)),X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b,y_train,initial_theta,eta,n_iters)
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self


随机梯度下降法


随机梯度下降法是在矩阵X_b中任选一行进行梯度下降,基于这种思想,每次下降具有很大的随机性,甚至损失函数有可能变大,但根据经验,发现这种方法也可以较好的计算出最佳的损失函数值。

img_6780521ac5905045a3337dc2faa658da.png
随机梯度下降法的超参数(模拟退火)

由于随机梯度下降法的不确定性,因此eta值需要根据每次递归的过程递减,图示即为常用的eta值递减方案。

def dJ_sgd(theta,X_b_i,y_i):
    return X_b_i.T.dot(X_b_i.dot(theta)-y_i)*2.

def sgd(X_b,y, initial_theta,n_iters):
    t0 = 5.0
    t1 = 50.0
    
    def learning_theta(t):
        return t0/(t1+t)
    
    theta = initial_theta
    for cur_iter in range(n_iters):
        rand_i = np.random.randint(len(X_b))
        gradient = dJ_sgd(theta,X_b[rand_i],y[rand_i])
        theta = theta-learning_theta(cur_iter) * gradient
    return theta
使用sklearn中的随机梯度下降法
from sklearn.linear_model import SGDRegressor

sgd = SGDRegressor(n_iter=1000)
sgd.fit(X_train_standard,y_train)
sgd.score(X_test_standard,y_test)


梯度下降法的DEBUG


一般来说,梯度下降法需要对损失函数进行数学推导出他的导函数,但我们如何得知推导过程是否正确,或者说导函数是否正确呢,我们可以使用以下方法进行验证

def dJ_debug(theta,X_b,y,epslion=0.01):
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epslion
        theta_2 = theta.copy()
        theta_2[i] -= epslion
        res[i] = (J(theta_1,X_b,y)-J(theta_2,X_b,y)/(2*epslion))
    return res
img_b4be7e79c3fc76e278edd4e97d455abf.png
使用两个蓝点的斜率来替代红点的斜率,验证斜率是否正确
目录
相关文章
|
1天前
|
机器学习/深度学习 算法 算法框架/工具
Python深度学习基于Tensorflow(5)机器学习基础
Python深度学习基于Tensorflow(5)机器学习基础
13 2
|
3天前
|
机器学习/深度学习 算法 Python
深入浅出Python机器学习:从零开始的SVM教程/厾罗
深入浅出Python机器学习:从零开始的SVM教程/厾罗
|
4天前
|
机器学习/深度学习 数据采集 数据可视化
利用Python进行历史数据预测:从入门到实践的两个案例分析
利用Python进行历史数据预测:从入门到实践的两个案例分析
17 1
|
10天前
|
机器学习/深度学习 边缘计算 TensorFlow
【Python机器学习专栏】Python机器学习工具与库的未来展望
【4月更文挑战第30天】本文探讨了Python在机器学习中的关键角色,重点介绍了Scikit-learn、TensorFlow和PyTorch等流行库。随着技术进步,未来Python机器学习工具将聚焦自动化、智能化、可解释性和可信赖性,并促进跨领域创新,结合云端与边缘计算,为各领域应用带来更高效、可靠的解决方案。
|
10天前
|
机器学习/深度学习 传感器 物联网
【Python机器学习专栏】机器学习在物联网(IoT)中的集成
【4月更文挑战第30天】本文探讨了机器学习在物联网(IoT)中的应用,包括数据收集预处理、实时分析决策和模型训练更新。机器学习被用于智能家居、工业自动化和健康监测等领域,例如预测居民行为以优化能源效率和设备维护。Python是支持物联网项目机器学习集成的重要工具,文中给出了一个使用`scikit-learn`预测温度的简单示例。尽管面临数据隐私、安全性和模型解释性等挑战,但物联网与机器学习的结合将持续推动各行业的创新和智能化。
|
10天前
|
机器学习/深度学习 数据采集 算法
【Python 机器学习专栏】机器学习在医疗诊断中的前沿应用
【4月更文挑战第30天】本文探讨了机器学习在医疗诊断中的应用,强调其在处理复杂疾病和大量数据时的重要性。神经网络、决策树和支持向量机等方法用于医学影像诊断、疾病预测和基因数据分析。Python作为常用工具,简化了模型构建和数据分析。然而,数据质量、模型解释性和伦理法律问题构成挑战,需通过数据验证、可解释性研究及建立规范来应对。未来,机器学习将更深入地影响医疗诊断,带来智能和精准的诊断工具,同时也需跨学科合作推动其健康发展。
|
10天前
|
机器学习/深度学习 分布式计算 物联网
【Python机器学习专栏】联邦学习:保护隐私的机器学习新趋势
【4月更文挑战第30天】联邦学习是保障数据隐私的分布式机器学习方法,允许设备在本地训练数据并仅共享模型,保护用户隐私。其优势包括数据隐私、分布式计算和模型泛化。应用于医疗、金融和物联网等领域,未来将发展更高效的数据隐私保护、提升可解释性和可靠性的,并与其他技术融合,为机器学习带来新机遇。
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【Python机器学习专栏】迁移学习在机器学习中的应用
【4月更文挑战第30天】迁移学习是利用已有知识解决新问题的机器学习方法,尤其在数据稀缺或资源有限时展现优势。本文介绍了迁移学习的基本概念,包括源域和目标域,并探讨了其在图像识别、自然语言处理和推荐系统的应用。在Python中,可使用Keras或TensorFlow实现迁移学习,如示例所示,通过预训练的VGG16模型进行图像识别。迁移学习提高了学习效率和性能,随着技术发展,其应用前景广阔。
|
12月前
|
C++ Python
Python入门学习(1)
Python入门学习(1)
|
机器学习/深度学习 数据采集 人工智能
Python入门学习
每一种语言都有各自的思想和优势。或许了解一下,在进行本行的工作时,难免就会想起其他语言的解决方法。何况是人工智能语言非常广泛的python呢
Python入门学习