Python3入门机器学习 - 梯度下降法

简介: 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。

模拟实现梯度下降法


def DJ(theta):      //计算损失函数J的斜率
    return 2*(theta-2.5)
def J(theta):        //损失函数J,使用梯度下降法 求该函数极小值
    return (theta-2.5)**2+1
theta = 0.0
eta = 0.1
epsilon = 1e-8
theta_history = [theta]

while True:
    gradient = DJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    theta_history.append(theta)
    if(abs(J(theta) - J(last_theta))<epsilon):
        break

pyplot.plot(plot_x,plot_y)
pyplot.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
img_acdd1700a150b18d152f8c8c784c1a89.png
梯度下降法应用于线性回归算法
    def fit_gd(self,X_train,y_train,eta=0.01,n_iters=1e6):
        def J(theta,X_b,y):
            try:
                return np.sum((y-X_b.dot(theta))**2)/len(y)
            except:
                return float("inf")
        def dJ(theta,X_b,y):
            # res = np.empty()
            # res[0] = np.sum(X_b.dot(theta)-y)
            # for i in range(1,len(theta)):
            #     res[i] = (X_b.dot(theta)-y).dot(X_b[:,i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(X_b.dot(theta)-y)*2./len(X_b)
        def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e6,epsilon=1e-8):
            theta = initial_theta
            cur_iter = 0
            while cur_iter<n_iters:
                gradient = dJ(theta,X_b,y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta,X_b,y) - J(last_theta,X_b,y)) < epsilon):
                    break
                cur_iter+=1
            return theta
        X_b = np.hstack([np.ones((len(X_train),1)),X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b,y_train,initial_theta,eta,n_iters)
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self


随机梯度下降法


随机梯度下降法是在矩阵X_b中任选一行进行梯度下降,基于这种思想,每次下降具有很大的随机性,甚至损失函数有可能变大,但根据经验,发现这种方法也可以较好的计算出最佳的损失函数值。

img_6780521ac5905045a3337dc2faa658da.png
随机梯度下降法的超参数(模拟退火)

由于随机梯度下降法的不确定性,因此eta值需要根据每次递归的过程递减,图示即为常用的eta值递减方案。

def dJ_sgd(theta,X_b_i,y_i):
    return X_b_i.T.dot(X_b_i.dot(theta)-y_i)*2.

def sgd(X_b,y, initial_theta,n_iters):
    t0 = 5.0
    t1 = 50.0
    
    def learning_theta(t):
        return t0/(t1+t)
    
    theta = initial_theta
    for cur_iter in range(n_iters):
        rand_i = np.random.randint(len(X_b))
        gradient = dJ_sgd(theta,X_b[rand_i],y[rand_i])
        theta = theta-learning_theta(cur_iter) * gradient
    return theta
使用sklearn中的随机梯度下降法
from sklearn.linear_model import SGDRegressor

sgd = SGDRegressor(n_iter=1000)
sgd.fit(X_train_standard,y_train)
sgd.score(X_test_standard,y_test)


梯度下降法的DEBUG


一般来说,梯度下降法需要对损失函数进行数学推导出他的导函数,但我们如何得知推导过程是否正确,或者说导函数是否正确呢,我们可以使用以下方法进行验证

def dJ_debug(theta,X_b,y,epslion=0.01):
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epslion
        theta_2 = theta.copy()
        theta_2[i] -= epslion
        res[i] = (J(theta_1,X_b,y)-J(theta_2,X_b,y)/(2*epslion))
    return res
img_b4be7e79c3fc76e278edd4e97d455abf.png
使用两个蓝点的斜率来替代红点的斜率,验证斜率是否正确
目录
相关文章
|
11天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
40 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
1月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
89 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
84 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
126 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
39 2
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
51 3
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
35 1