Python3入门机器学习 - 梯度下降法

简介: 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。

模拟实现梯度下降法


def DJ(theta):      //计算损失函数J的斜率
    return 2*(theta-2.5)
def J(theta):        //损失函数J,使用梯度下降法 求该函数极小值
    return (theta-2.5)**2+1
theta = 0.0
eta = 0.1
epsilon = 1e-8
theta_history = [theta]

while True:
    gradient = DJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    theta_history.append(theta)
    if(abs(J(theta) - J(last_theta))<epsilon):
        break

pyplot.plot(plot_x,plot_y)
pyplot.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
img_acdd1700a150b18d152f8c8c784c1a89.png
梯度下降法应用于线性回归算法
    def fit_gd(self,X_train,y_train,eta=0.01,n_iters=1e6):
        def J(theta,X_b,y):
            try:
                return np.sum((y-X_b.dot(theta))**2)/len(y)
            except:
                return float("inf")
        def dJ(theta,X_b,y):
            # res = np.empty()
            # res[0] = np.sum(X_b.dot(theta)-y)
            # for i in range(1,len(theta)):
            #     res[i] = (X_b.dot(theta)-y).dot(X_b[:,i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(X_b.dot(theta)-y)*2./len(X_b)
        def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e6,epsilon=1e-8):
            theta = initial_theta
            cur_iter = 0
            while cur_iter<n_iters:
                gradient = dJ(theta,X_b,y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta,X_b,y) - J(last_theta,X_b,y)) < epsilon):
                    break
                cur_iter+=1
            return theta
        X_b = np.hstack([np.ones((len(X_train),1)),X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b,y_train,initial_theta,eta,n_iters)
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self


随机梯度下降法


随机梯度下降法是在矩阵X_b中任选一行进行梯度下降,基于这种思想,每次下降具有很大的随机性,甚至损失函数有可能变大,但根据经验,发现这种方法也可以较好的计算出最佳的损失函数值。

img_6780521ac5905045a3337dc2faa658da.png
随机梯度下降法的超参数(模拟退火)

由于随机梯度下降法的不确定性,因此eta值需要根据每次递归的过程递减,图示即为常用的eta值递减方案。

def dJ_sgd(theta,X_b_i,y_i):
    return X_b_i.T.dot(X_b_i.dot(theta)-y_i)*2.

def sgd(X_b,y, initial_theta,n_iters):
    t0 = 5.0
    t1 = 50.0
    
    def learning_theta(t):
        return t0/(t1+t)
    
    theta = initial_theta
    for cur_iter in range(n_iters):
        rand_i = np.random.randint(len(X_b))
        gradient = dJ_sgd(theta,X_b[rand_i],y[rand_i])
        theta = theta-learning_theta(cur_iter) * gradient
    return theta
使用sklearn中的随机梯度下降法
from sklearn.linear_model import SGDRegressor

sgd = SGDRegressor(n_iter=1000)
sgd.fit(X_train_standard,y_train)
sgd.score(X_test_standard,y_test)


梯度下降法的DEBUG


一般来说,梯度下降法需要对损失函数进行数学推导出他的导函数,但我们如何得知推导过程是否正确,或者说导函数是否正确呢,我们可以使用以下方法进行验证

def dJ_debug(theta,X_b,y,epslion=0.01):
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epslion
        theta_2 = theta.copy()
        theta_2[i] -= epslion
        res[i] = (J(theta_1,X_b,y)-J(theta_2,X_b,y)/(2*epslion))
    return res
img_b4be7e79c3fc76e278edd4e97d455abf.png
使用两个蓝点的斜率来替代红点的斜率,验证斜率是否正确
目录
相关文章
|
15天前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
124 1
|
20天前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
96 5
|
1月前
|
数据采集 存储 XML
Python爬虫入门(1)
在互联网时代,数据成为宝贵资源,Python凭借简洁语法和丰富库支持,成为编写网络爬虫的首选。本文介绍Python爬虫基础,涵盖请求发送、内容解析、数据存储等核心环节,并提供环境配置及实战示例,助你快速入门并掌握数据抓取技巧。
|
1月前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
77 0
|
1月前
|
存储 缓存 安全
Python字典:从入门到精通的实用指南
Python字典如瑞士军刀般强大,以键值对实现高效数据存储与查找,广泛应用于配置管理、缓存、统计等场景。本文详解字典基础、进阶技巧、实战应用与常见陷阱,助你掌握这一核心数据结构,写出更高效、优雅的Python代码。
44 0
|
2月前
|
数据挖掘 数据处理 C++
Python Lambda:从入门到实战的轻量级函数指南
本文通过10个典型场景,详解Python中Lambda匿名函数的用法。Lambda适用于数据处理、排序、条件筛选、事件绑定等简洁逻辑,能提升代码简洁性和开发效率。同时提醒避免在复杂逻辑中过度使用。掌握Lambda,助你写出更高效的Python代码。
124 0
|
2月前
|
数据采集 Web App开发 JSON
Python爬虫基本原理与HTTP协议详解:从入门到实践
本文介绍了Python爬虫的核心知识,涵盖HTTP协议基础、请求与响应流程、常用库(如requests、BeautifulSoup)、反爬应对策略及实战案例(如爬取豆瓣电影Top250),帮助读者系统掌握数据采集技能。
196 0
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
326 0
|
机器学习/深度学习 Python 算法
Python机器学习(三):梯度下降法
梯度下降法不是一种机器学习方法,而是一种基于搜索的最优化方法,它的作用的最小化一个损失函数。相应地,梯度上升可以用于最大化一个效用函数。本文主要讲解梯度下降。
2392 0
|
20天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
191 102

热门文章

最新文章

推荐镜像

更多