Python数据分析之groupby语法糖

简介: 对于dataframe的groupby聚合函数来说,我们适当了解下语法糖,会对数据分析起到事半功倍的效果。对分组进行迭代首先看下各字段的类型import numpy as npimport pandas as pdimport pymysqlconn = pymysql.

对于dataframe的groupby聚合函数来说,我们适当了解下语法糖,会对数据分析起到事半功倍的效果。

对分组进行迭代

首先看下各字段的类型

import numpy as np
import pandas as pd
import pymysql
conn = pymysql.connect(host='localhost', user='root', passwd='123456', db='test', port=3306, charset='utf8')
jianshu = pd.read_sql('select * from jianshu1',conn)
jianshu.dtypes

可以看出,view这些字段是整数类型的数据,但这里是object数据,所以我们需要进行数据类型的修改,以view为例。

jianshu['view'] = jianshu['view'].astype('int64')
jianshu.dtypes

把user列作为索引。

jianshu.set_index('user',inplace=True)
jianshu

通过分组后的数据类型为groupby对象,可进行迭代。

jianshu.groupby(jianshu.index)
for name,group in jianshu.groupby(jianshu.index):
    print(name,group)

语法糖一:选取一个或多个列

jianshu.groupby(jianshu.index)[['view']].sum()

语法糖二:数据聚合
通过aggregate或者agg方法

jianshu.groupby(jianshu.index)[['view']].agg(['mean','sum'])
相关文章
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
377 0
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
191 2
|
10月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
11月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
200 3
|
8月前
|
大数据 开发者 C++
Python语法糖详解教程
《Python语法糖详解教程》介绍了编程语言中的“语法糖”,即通过特殊语法形式简化代码,使代码更简洁、易读和高效。文章详细解析了列表推导式、字典推导式、元组解包、条件表达式、with语句和装饰器等核心语法糖,并提供了具体示例和最佳实践指南。通过这些技巧,开发者可以在保持底层功能不变的前提下,显著提升开发效率和代码质量。
423 8
|
8月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
11月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
|
11月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
323 5
|
11月前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####
|
11月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势

热门文章

最新文章

推荐镜像

更多