Python 读写 Excel 文件

简介: Python 读写 Excel 文件

在 Python 中,想去读写 Excel 文件的方式,有蛮多种方式的,比如说可以用 xlrd、openpyxl、pandas 等模块都能去实现,只是说在不同的模块上去读写稍有区别。

我自己喜欢使用 pandas,它足够强大。

01 Pandas 是什么?

Pandas 是一个开源的第三方 Python 库,基于 Numpy 和 Matplotlib 上构建而来,业内数据分析主流方向【三件套】(NumPy、Matplotlib、Pandas)。Pandas 已经成为 Python 数据分析的必备高级工具,它作为强大、灵活、可以支持任何编程语言的数据分析工具,颇受大家的喜爱。

02 安装 Pandas

第一种方式(推荐):

打开终端,输入:pip install pandas命令即可安装。

第二种方式:

找到 Pandas 的下载库:https://www.lfd.uci.edu/~gohlke/pythonlibs/

然后下载自己想要的版本。

03 将数据写入 Excel 文件

Excel 就是一个表格,它里面有【行】和【列】,这是我们需要重点关注的两个地方,不管是读数据,还是写数据,其实就是在操作行和列。

非常简单的,咱们来实现一个简单的【用户表】,大致思路是这样的:

  1. 先导入 pandas 库
  2. 准备数据,并创建一个工作表
  3. 自定义索引(我故意加的)
  4. 将数据写到 excel 表格中(此处会自动创建 excel 文件)

具体代码如下:

# 第一步,导入 pandas 库,取个别名
import pandas as pd
# 第二步,准备数据,并创建一个工作表
# DataFrame 数据帧,重点概念
# 它相当于我们【工作簿】中的一个【工作表】
df = pd.DataFrame({
    'id':[1,2,3], 
    'name':['张三', '李四', '王五'],
    'age':[22, 33, 44]
})
# 第三步,Pandas 会使用默认的索引
# 但咱还是自定义索引吧,要不导致生成的工作表也会存在它默认的索引,不太好
df = df.set_index('id')
print(df)
# 第四步,将数据写入到 excel 文件中
df.to_excel('people.xlsx')
print('Done!')

04 从 Excel 中读取数据

有个前提,你得先有一份 excel 文件,千万不要太紧张给忘了。

就一个重点方法:read_excel()

你可以指定读哪个文件?读哪个工作表?从哪行开始读?……

咱们,还是看代码吧,非常简单:

# 参数1:指定读取 hello.xlsx 文件
# 参数2:header = 3 表示从第四行开始,因为索引是从 0 开始的
# 参数3:sheet_name 指定所要去读取的工作表
user= pd.read_excel('user.xlsx', header=3, sheet_name='sheet1')
# 输出列名
print(user.columns)
# 如果你的 Excel 中没有开头标题,可以用 header = None 来进行设置
user= pd.read_excel('user.xlsx', header=None)
user.columns = ['id', 'name', 'age']
print(user.columns)
# 通过 index_id 去指定 id 列作为索引
user = pd.read_excel('user.xlsx', index_col='id')
# head 默认指输出前 5 行,此时就不会产生默认索引了
print(user.head())
# skiprows 开头跳过几行
# usecols 使用那些列中的数据
# dtype 设置某一列的类型
users = pd.read_excel('user.xlsx', skiprows = 3, usecols='E:H', dytpe={'ID':str, 'gender':str, 'birthday':str})
# 如果你想按照某个列去排序,也是可以的
# 使用 sort_values 就可以实现了
# sort_values 指按值排序
# by 指针对某一行
# ascending 为 False 指表示从大到小
# inplace 指是否马上生效
users.sort_values(by='age', ascending=False, inplace=True)


目录
相关文章
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
7天前
|
文字识别 BI
【图片型PDF】批量识别扫描件PDF指定区域局部位置内容,将识别内容导出Excel表格或批量改名文件,基于阿里云OCR对图片型PDF识别改名案例实现
在医疗和政务等领域,图片型PDF文件(如病历、报告、公文扫描件)的处理需求广泛。通过OCR技术识别这些文件中的文字信息,提取关键内容并保存为表格,极大提高了信息管理和利用效率。本文介绍一款工具——咕嘎批量OCR系统,帮助用户快速处理图片型PDF文件,支持区域识别、内容提取、导出表格及批量改名等功能。下载工具后,按步骤选择处理模式、进行区域采样、批量处理文件,几分钟内即可高效完成数百个文件的处理。
49 8
|
21天前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
51 20
|
27天前
|
存储 数据采集 数据处理
如何在Python中高效地读写大型文件?
大家好,我是V哥。上一篇介绍了Python文件读写操作,今天聊聊如何高效处理大型文件。主要方法包括:逐行读取、分块读取、内存映射(mmap)、pandas分块处理CSV、numpy处理二进制文件、itertools迭代处理及linecache逐行读取。这些方法能有效节省内存,提升效率。关注威哥爱编程,学习更多Python技巧。
|
2月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
234 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
28天前
|
存储 JSON 对象存储
如何使用 Python 进行文件读写操作?
大家好,我是V哥。本文介绍Python中文件读写操作的方法,包括文件读取、写入、追加、二进制模式、JSON、CSV和Pandas模块的使用,以及对象序列化与反序列化。通过这些方法,你可以根据不同的文件类型和需求,灵活选择合适的方式进行操作。希望对正在学习Python的小伙伴们有所帮助。欢迎关注威哥爱编程,全栈路上我们并肩前行。
|
1月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
计算机视觉 Python
如何使用Python将TS文件转换为MP4
本文介绍了如何使用Python和FFmpeg将TS文件转换为MP4文件。首先需要安装Python和FFmpeg,然后通过`subprocess`模块调用FFmpeg命令,实现文件格式的转换。代码示例展示了具体的操作步骤,包括检查文件存在性、构建FFmpeg命令和执行转换过程。
76 7
|
2月前
|
Python
批量将不同的工作簿合并到同一个Excel文件
本文介绍如何使用Python的`pandas`库批量合并不同工作簿至同一Excel文件。通过模拟生成三个班级的成绩数据,分别保存为Excel文件,再将这些文件合并成一个包含所有班级成绩的总成绩单。步骤包括安装必要库、生成数据、保存与合并工作簿。
71 6

热门文章

最新文章

推荐镜像

更多