深度学习第17讲:keras入门和快速上手指南-阿里云开发者社区

开发者社区> Python爱好者> 正文

深度学习第17讲:keras入门和快速上手指南

简介:

深度学习到这个进度,笔者觉得有必要开始对一些优秀的深度学习框架进行介绍了。在前面几讲中,我们着重对 Tensorflow 进行了介绍,并用其实现了一些数据例子。Tensorflow 虽然很强大,但语法和使用便利性上对于新手来说并不是那么的友好,所以到这里笔者需要给大家介绍 keras 了。

65ea51aa3cb638955b9f6e0227e3e9b303905c04

keras 是一款使用纯 python 编写的神经网络 API,使用 keras 能够快速实现你的深度学习方案,所以 keras 有着为快速试验而生的美称。kerasTensorflowTheanoCNTK 为后端,意思就是 keras 的底层计算都是以以上这些框架为基础的,这使得 keras 能够专注于快速搭建起神经网络模型。

keras 搭建神经网络的基本流程

利用 keras 搭建神经网络模型非常快速和高效,其模型实现的核心流程可以用四个步骤来概括。具体如下:

第一步就是设计你的网络结构(add):
调用 keras 神经网络的各个模块来组件你的模型架构,通过 add 方法来叠加。这一步是最需要仔细考虑的地方,关乎你的神经网络的复杂性和高效与否。简单示例如下:


from keras.layers import Dense, Activation
model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))

上面的示例中,我们从 keraslayers 模块中导入了 Dense 全连接层、Activation 激活层,构造了一个包含两个全连接层和一个 relusoftmax 激活的网络模型。

第二步是将设计好模型进行编译(compile):

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

第三步就是对训练数据进行拟合训练(fit):

model.fit(x_train, y_train, epoche=5, batch_size=32)

最后就是对训练好的模型进行评估(evaluate):

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

这样你就用 keras 将你的神经网络模型快速实现了。之后你可以考虑对模型进行调整和优化,但将想法和方案实现落地这个过程是非常快速的。至于 keras 的具体细节和其他的一些功能,大家可以参考keras 的官方文档:https://keras.io/

324c1ae8889461270d91565c11b1f7fc1506bebe

当然也有中文版的:http://keras-cn.readthedocs.io/en/latest/

dd7acdfc2efa2dbc406e9144dcb8f9ab9d572b51
keras 模拟数据例子

下面我们用 numpy 生成的随机数的例子来使用 keras 去搭建神经网络,我们模拟一个 softmax 多分类的例子:


import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

模型训练:

775783742dd13b7feeb407f9c945deb3d31be7c1

模型总结,这也是 keras 的一个比较好的功能之一,可以让你对了解模型的基本概要:

1962fd7e8a1e846c9d8a6f6220d5f5e01a1241eb

由模型总结我们看到神经网络每一层的输入输出大小以及需要训练的参数个数,非常明了。

利用 keras 实现 LeNet-5 模型

在之前的推送中我们使用了 Tensorflowmnist 数据例子来实现了 Yann Lecun 大佬的 LeNet-5 模型,本节我们将继续使用 keras 来搭建 LeNet-5 模型。依然是按照前面所讲到的 keras 搭建神经网络模型四步骤,LeNet-5 模型搭建如下:


import keras
from keras.layers import Conv2D, Dense, Dropout, Activation, MaxPooling2D, Flatten
from keras.models import Sequential
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# define lenet5 model
def lenet5(X_train, y_train):
model = Sequential()
# first step: create sequential model and add layers
model.add(Conv2D(6, (5, 5), strides=1, padding='valid',
input_shape=(32, 32, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(16, (5, 5), strides=1, activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(1203, (5, 5), strides=1, activation='relu'))
model.add(Flatten())
model.add(Dense(84))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(10))
model.add(Activation('softmax'))
# second step:compile the model
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# third step: fit the model
model.fit(X_train, y_train, batch_size=128, epochs=10)
return model
# fourth step: evaluate the model
def eval_score(model, X_test, y_test):
score = model.evaluate(X_test, y_test, batch_size=128)
return score
if __name__ == '__main__':
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
sess = tf.InteractiveSession()
X_train = mnist.train.images
X_train = tf.reshape(X_train, [-1, 28, 28, 1])
X_train = tf.pad(X_train, [[0,0],[2,2],[2,2], [0,0]]).eval()
y_train = mnist.train.labels
X_test = mnist.test.images
X_test = tf.reshape(X_test, [-1, 28, 28, 1])
X_test = tf.pad(X_test, [[0,0],[2,2],[2,2], [0,0]]).eval()
y_test = mnist.test.labels
model = lenet5(X_train, y_train)
print(model.summary())
score = eval_score(model, X_test, y_test)
print(score)

在上述代码中,我们利用 keras 四步法快速搭建起了 LeNet5 模型,并使用 mnist 手写数字数据集进行了训练。这里需要说明的一点是,笔者这里的 mnist 数据是通过 Tensorflow 下载导入的,其实 keras 本身也有 mnist 的数据导入模块。这么做主要是笔者想要通过 Tensorflow 对训练集的维度做 padding 时方便,mnist 数据集输入大小的 shape 为 28x28x1,但在 Lecun 的论文原文中,输入图像是 32x32x1,所以在搭建原始的 LeNet5 结构时需要对输入在一开始就做一个 padding。

模型训练过程如下:

a3531b91243785d700c627c6842c023b701d821b

模型概要如下:

234cf1bfb3c76a8a6662df02e3058818d2f89851

最后我们使用 LeNet5 在测试集上取得了 99.01% 的准确率:

d6bdc62603ec36b07dcfad6db351893ced3b7ab2

原文发布时间为:2018-10-8
本文作者:louwill
本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
Python爱好者
使用钉钉扫一扫加入圈子
+ 订阅

官网链接