用Python生成马赛克画

简介: 大家知道马赛克画是什么吗?不是动作片里的马赛克哦~~ 马赛克画是一张由小图拼成的大图,本文的封面就是我们的效果图,放大看细节,每一块都是一张独立的图片,拼在一起组成一张大图,感觉像是用马赛克拼出来的画,所以叫马赛克画。

大家知道马赛克画是什么吗?不是动作片里的马赛克哦~~

马赛克画是一张由小图拼成的大图,本文的封面就是我们的效果图,放大看细节,每一块都是一张独立的图片,拼在一起组成一张大图,感觉像是用马赛克拼出来的画,所以叫马赛克画。看到网上的一些马赛克画觉得很酷,于是自己用Python实现了一下将一张原图转换成马赛克画。

我们的效果图是这样的

3459e77c0c6fee728146425213f4cee0f31d2718

原图是这样的

375d863c0edc5210fc1b64cbafee2b8bb66e633e

实现的具体思路是这样

第一步:首先收集一组图片,这些图片会作为大图中的小方格图片。图片越多,最后生成的图片颜色越接近。

第二步:将要转换的图片分割成一个一个小方格图片,像下面这样

c40d6208258c778635753c6eebab873650560f01

第三步:对于每一个小方格图片,取图片集里面最接近的图片替换。所有小方格都替换后,就生成了我们最终的马赛克画。

听上去是不是很简单?

我们来看一下具体的实现步骤,下面是一些核心代码。

我们的图片集存在images目录下,下面的代码加载目录下所有的图片,并缩放成统一的尺寸

import re
import os
import cv2
import numpy as np
from tqdm import tqdm

IMG_DIR = "images"

def load_all_images(tile_row, tile_col):
    img_dir = IMG_DIR
    filenames = os.listdir(img_dir)
    result = []
    print(len(filenames))
    for filename in tqdm(filenames):
        if not re.search(".jpg", filename, re.I):
            continue
        try:
            filepath = os.path.join(img_dir, filename)
            im = cv2.imread(filepath)
            row = im.shape[0]
            col = im.shape[1]
            im = resize(im, tile_row, tile_col)
            result.append(np.array(im))
        except Exception as e:
            msg = "error with {} - {}".format(filepath, str(e))
            print(msg)
    return np.array(result, dtype=np.uint8)

这里load_all_images函数的参数就是统一后的尺寸,tile_row和tile_col分别对应高和宽。

下面的代码对要转换的图片进行分割

img = cv2.imread(infile)
tile_row, tile_col = get_tile_row_col(img.shape)
for row in range(0, img_shape[0], tile_row):
    for col in range(0, img_shape[1], tile_col):
        roi = img[row:row+tile_row,col:col+tile_col,:]

我们将要转换的图片分割成一个个小方格,tile_row和tile_col是小方格的高和宽,roi存取小方格中的图片数据。

下面是计算两张图片相似度的函数

from scipy.spatial.distance import euclidean
def img_distance(im1, im2):
    if im1.shape != im2.shape:
        msg = "shapes are different {} {}".format(im1.shape, im2.shape)
        raise Exception(msg)
    array1 = im1.flatten()
    array2 = im2.flatten()
    dist = euclidean(array1, array2)
    return dist

im1和im2是两张图片的数据,图片数据是一个三维的numpy数组,这里我们将三维数组转换成一维数组后,比较两者的欧式距离。之后要找出最相似的图片,只需遍历图片集中所有的图片,找到距离最短的那张图片,去替换原图中的小方格就可以了。

我们再来看一下最终实现的效果

3bb79e689710f2775f81b4c6363dcc918306843a

放大图中局部的细节如下

19029a9f3eb85efab11226efde97eb311cdef58d

如果对图片的画质不满意,想要更精细的画质,可以考虑在分割的时候把图片分割成更小的方格,不过这样也会增加程序运行的时间。

生成图片的过程比较耗时,考虑到性能原因,原程序中使用多进程的方式并行处理。

原文发布时间为:2018-09-25

原文作者:shenzhongqiang

本文来自云栖社区合作伙伴“python爬虫人工智能大数据”,了解相关信息可以关注“python爬虫人工智能大数据”。


相关文章
|
4月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
363 102
|
4月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
382 104
|
4月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
295 103
|
4月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
220 82
|
3月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
320 3
|
3月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
553 3
|
3月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
360 3
|
3月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
419 0
|
4月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的多面手
Python:现代编程的多面手
108 0

热门文章

最新文章

推荐镜像

更多