Python标准库(待续)

简介: 相识一场,记得顶我集合操作并集>>> a = set([1,2,3])>>> b = set([2,3,4])>>> a.union(b){1, 2, 3, 4}>>> a|b{1, 2, 3, 4}交集>>> a = set([1,2,3])>>> b = set([2,3,4])>>> a.

相识一场,记得顶我


集合操作

并集
>>> a = set([1,2,3])
>>> b = set([2,3,4])
>>> a.union(b)
{1, 2, 3, 4}
>>> a|b
{1, 2, 3, 4}
交集
>>> a = set([1,2,3])
>>> b = set([2,3,4])
>>> a.intersection(b)
{2, 3}
>>> a&b
{2, 3}
子集归属
>>> c = a&b
>>> c.issubset(a)
True
>>> c<=b
True
>>> c<=a
True
>>> c>=a
False
因为集合是可变的,但是集合本身包含的是不可变对象,所以以下代码会报错。
>>> a = set([1,2,3])
>>> b = set([2,3,4])
>>> a.add(b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'
这时候我们需要使用frozenset类型,用于代表不可变的集合,它会创建一个副本对象加入到集合中。
>>> a.add(frozenset(b))
>>> a
{1, 2, 3, frozenset({2, 3, 4})}
堆操作

堆是一种数据结构,它是优先队列的一种,它在查找方面比列表的效率要高得多。

heappush(heap,x) 入堆
heappop(heap) 出堆
heapify(heap) 把可迭代对象转换为堆
heapreplace(heap,x) 将堆中最小元素弹出,同时将x入堆
nlargest(n,iter) 找出可迭代对象中第n大元素
nsmallest(n,iter) 找出可迭代对象中第n小元素

>>> from heapq import *
>>> from random import shuffle
>>> data = range(10)
>>> shuffle(data)
>>> heap = []
>>> for n in data:
       heappush(heap,n)
>>> heap
[0, 2, 1, 3, 5, 7, 4, 6, 9, 8]
>>> heappop(heap)
0
>>> heappop(heap)
1
>>> heappop(heap)
2
>>> heappop(heap)
3
>>> heap
[4, 5, 7, 6, 9, 8]
-----------------------------------------
>>> heap = [9,7,2,4,5,6,2,3,1]
>>> heapify(heap)
>>> heap
[1, 3, 2, 4, 5, 6, 2, 7, 9]
-----------------------------------------
>>> heapreplace(heap,0.5)
1
>>> heap
[0.5, 3, 2, 4, 5, 6, 2, 7, 9]

从上述代码运行的结果可以看出,这是一个小根堆的排序算法---位于i位置上的元素总比i/2位置处的元素大,反过来也就是i位置处的元素总比2i和2i+1位置处的元素小。

双端队列
>>> from collections import deque
>>> q = deque(range(5))
>>> q.append(5)
>>> q.appendleft(6)
>>> q
deque([6, 0, 1, 2, 3, 4, 5])
>>> q.pop()
5
>>> q.popleft()
6
>>> q
deque([0, 1, 2, 3, 4])
>>> q.rotate(2)
>>> q
deque([3, 4, 0, 1, 2])
>>> q.extend([3,4])
>>> q
deque([3, 4, 0, 1, 2, 3, 4])
>>> q.extendleft([2,1])
>>> q
deque([1, 2, 3, 4, 0, 1, 2, 3, 4])

从上述代码可以看出双端队列的好处在于它可以在列表的两端进行操作和旋转列表。

time

可以使用实数表示,也可以使用包含9个整数的元组表示。如果使用元组表示,那这些整数的意义如下:
(2018,1,21,10,28,30,2,21,0)
表示2018年1月21日,10时28分30秒,星期3,当天为当年的第21天,(无夏令时)

asctime([tuple]) 将时间元组转换为字符串
localtime([secs])将秒数转换为日期元组,以本地时间为准
mktime(tuple)将时间元组转换为本地元组
sleep(secs)休眠
strptime(string[,format])将字符串解析为时间元组
time()当前时间
'Wed Jul 11 10:02:04 2018'

random

random() 返回0<n<=1之间的随机实数n
getrandbits(n) 以长整型形式返回n个随机位 (加密有用)
uniform(a,b) 返回随机实数n,其中a<=n<b,(a,b)之间的均匀分布
randrange([start],stop,[step]) 返回range(start,stop,step)中的实数
choice(seq)从序列seq中返回随意元素
shuffle(seq[,random])原地指定序列
seqsample(seq,n) 从序列seq中选择n个随机且独立的元素

re

re模块是一个正则表达式的模块

compile(pattern[,flags]) 根据包含正则表达式的字符串创建模式对象
search(pattern, string[,flags])在字符串中寻找模式
match(pattern,string[,flags]) 在字符串的开始处匹配模式
split(pattern,string[,maxsplit=0])根据模式的匹配来分割字符串
findall(pattern,string) 列出字符串中模式的所有匹配项
sub(pat,repl,string[,count=0])将字符串中所有pat的匹配项用repl替换
escape(string) 将字符串中所有特殊正则表达式字符转义

用任意长度的逗号和空格序列来分割字符串

some_text = 'alpha,beta,,,,gamma delta'
re.split('[, ]+',some_text)
['alpha', 'beta', 'gamma', 'delta']
目录
相关文章
|
10天前
|
Python
使用Python的openpyxl库
【5月更文挑战第17天】使用Python的openpyxl库
34 2
|
1天前
|
数据采集 数据挖掘 Serverless
利用Python和Pandas库优化数据清洗流程
在数据分析项目中,数据清洗是至关重要的一步。传统的数据清洗方法往往繁琐且易出错。本文将介绍如何利用Python编程语言中的Pandas库,通过其强大的数据处理能力,实现高效、自动化的数据清洗流程。我们将探讨Pandas库在数据清洗中的应用,包括缺失值处理、重复值识别、数据类型转换等,并通过一个实际案例展示如何利用Pandas优化数据清洗流程,提升数据质量。
|
3天前
|
机器学习/深度学习 数据处理 算法框架/工具
Python标准库与第三方库:强大的编程资源
Python标准库与第三方库:强大的编程资源
|
3天前
|
机器学习/深度学习 数据处理 算法框架/工具
Python库与框架的深入解析
Python中的库和框架扩展了其功能,提高了开发效率。库(如标准库os和第三方库requests)提供预定义的工具,而框架(如Web框架Flask和数据科学框架Scikit-learn)定义了应用结构和交互方式。通过库和框架,开发者能更专注于业务逻辑,快速构建Web应用和执行数据科学任务。
|
4天前
|
Python
python相关库的安装:pandas,numpy,matplotlib,statsmodels
python相关库的安装:pandas,numpy,matplotlib,statsmodels
|
5天前
|
Python
Python之Math库解析
Python之Math库解析
10 0
Python之Math库解析
|
5天前
|
数据采集 Web App开发 测试技术
玩转Python的fake-useragent库
玩转Python的fake-useragent库
|
6天前
|
数据采集 数据可视化 数据处理
利用Python和Pandas库实现高效的数据处理与分析
在大数据和人工智能时代,数据处理与分析已成为不可或缺的一环。Python作为一门强大的编程语言,结合Pandas库,为数据科学家和开发者提供了高效、灵活的数据处理工具。本文将介绍Pandas库的基本功能、优势,并通过实际案例展示如何使用Pandas进行数据清洗、转换、聚合等操作,以及如何利用Pandas进行数据可视化,旨在帮助读者深入理解并掌握Pandas在数据处理与分析中的应用。
|
7天前
|
架构师 数据挖掘 Python
最全pandas库(Python),2024年最新阿里云架构师面试
最全pandas库(Python),2024年最新阿里云架构师面试
最全pandas库(Python),2024年最新阿里云架构师面试
|
7天前
|
机器学习/深度学习 算法 前端开发
2024年8个可以提高数据科学工作效率并节省宝贵时间的Python库,2024年最新记得把每一次面试当做经验积累
2024年8个可以提高数据科学工作效率并节省宝贵时间的Python库,2024年最新记得把每一次面试当做经验积累
2024年8个可以提高数据科学工作效率并节省宝贵时间的Python库,2024年最新记得把每一次面试当做经验积累