「mysql优化专题」详解引擎(InnoDB,MyISAM)的内存优化攻略?(9)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 上一篇我们讲了关于视图应用与优化,本篇我们讲解内存优化。本篇短小精悍,通俗易懂。注意:以下都是在MySQL目录下的my.ini文件中改写。

上一篇我们讲了关于视图应用与优化,本篇我们讲解内存优化。本篇短小精悍,通俗易懂。

注意:以下都是在MySQL目录下的my.ini文件中改写。

一、InnoDB内存优化

InnoDB用一块内存区域做I/O缓存池,该缓存池不仅用来缓存InnoDB的索引块,而且也用来缓存InnoDB的数据块。

1、innodb_log_buffer_size

决定了InnoDB重做日志缓存的大小,可以避免InnoDB在事务提交前就执行不必要的日志写入磁盘操作。

2、设置Innodb_buffer_pool_size

改变量决定了InnoDB存储引擎表数据和索引数据的最大缓存区大小。


二、MyISAM内存优化

MyISAM存储引擎使用key_buffer缓存索引模块,加速索引的读写速度。对于MyISAM表的数据块,mysql没有特别的缓存机制,完全依赖于操作系统的IO缓存。

1、read_rnd_buffer_size

对于需要做排序的MyISAM表查询,如带有order by子句的sql,适当增加read_rnd_buffer_size的值,可以改善此类的sql性能。但需要注意的是read_rnd_buffer_size独占的,如果默认设置值太大,就会造成内存浪费。

2、key_buffer_size设置

key_buffer_size决定MyISAM索引块缓存分区的大小。直接影响到MyISAM表的存取效率。对于一般MyISAM数据库,建议1/4可用内存分配给key_buffer_size:

key_buffer_size=2G

3、read_buffer_size

如果需要经常顺序扫描MyISAM表,可以通过增大read_buffer_size的值来改善性能。但需要注意的是read_buffer_size是每个seesion独占的,如果默认值设置太大,就会造成内存浪费。


三、调整MySQL参数并发相关的参数

1、调整max_connections

提高并发连接

2、调整thread_cache_size

加快连接数据库的速度,MySQL会缓存一定数量的客户服务线程以备重用,通过参数thread_cache_size可控制mysql缓存客户端线程的数量。

3、innodb_lock_wait_timeout

控制InnoDB事务等待行锁的时间,对于快速处理的SQL语句,可以将行锁等待超时时间调大,以避免发生大的回滚操作。



已完结专题:

【mysql优化专题】【多线程/池专题】【架构技术专题】

更新中专题:

【dubbo专题】【dubbo源码专题】【JVM专题】【HTTP协议专题】【设计模式专题】【高并发专题】

【架构技术专题】【netty专题】【数据结构专题】【redis专题】

欢迎关注我的个人技术公众号,获取零基础入门学java,架构师全集,云计算,大数据,Python等视频资源!

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
SQL 关系型数据库 MySQL
MySQL底层概述—10.InnoDB锁机制
本文介绍了:锁概述、锁分类、全局锁实战、表级锁(偏读)实战、行级锁升级表级锁实战、间隙锁实战、临键锁实战、幻读演示和解决、行级锁(偏写)优化建议、乐观锁实战、行锁原理分析、死锁与解决方案
102 24
MySQL底层概述—10.InnoDB锁机制
|
1月前
|
存储 缓存 关系型数据库
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
|
1月前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
1月前
|
存储 缓存 关系型数据库
MySQL底层概述—3.InnoDB线程模型
InnoDB存储引擎采用多线程模型,包含多个后台线程以处理不同任务。主要线程包括:IO Thread负责读写数据页和日志;Purge Thread回收已提交事务的undo日志;Page Cleaner Thread刷新脏页并清理redo日志;Master Thread调度其他线程,定时刷新脏页、回收undo日志、写入redo日志和合并写缓冲。各线程协同工作,确保数据一致性和高效性能。
MySQL底层概述—3.InnoDB线程模型
|
1月前
|
存储 SQL 关系型数据库
MySQL底层概述—2.InnoDB磁盘结构
InnoDB磁盘结构主要包括表空间(Tablespaces)、数据字典(Data Dictionary)、双写缓冲区(Double Write Buffer)、重做日志(redo log)和撤销日志(undo log)。其中,表空间分为系统、独立、通用、Undo及临时表空间,分别用于存储不同类型的数据。数据字典从MySQL 8.0起不再依赖.frm文件,转而使用InnoDB引擎存储,支持事务原子性DDL操作。
226 100
MySQL底层概述—2.InnoDB磁盘结构
|
1月前
|
缓存 算法 关系型数据库
MySQL底层概述—1.InnoDB内存结构
本文介绍了InnoDB引擎的关键组件和机制,包括引擎架构、Buffer Pool、Page管理机制、Change Buffer、Log Buffer及Adaptive Hash Index。
238 97
MySQL底层概述—1.InnoDB内存结构
|
3天前
|
消息中间件 Java 应用服务中间件
JVM实战—2.JVM内存设置与对象分配流转
本文详细介绍了JVM内存管理的相关知识,包括:JVM内存划分原理、对象分配与流转、线上系统JVM内存设置、JVM参数优化、问题汇总。
JVM实战—2.JVM内存设置与对象分配流转
|
5天前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
5天前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
JVM简介—1.Java内存区域
|
23天前
|
存储 算法 Java
JVM: 内存、类与垃圾
分代收集算法将内存分为新生代和老年代,分别使用不同的垃圾回收算法。新生代对象使用复制算法,老年代对象使用标记-清除或标记-整理算法。
25 6