SEDA架构模型

简介: 一、传统并发模型的缺点基于线程的并发特点:每任务一线程直线式的编程使用资源昂高,context切换代价高,竞争锁昂贵太多线程可能导致吞吐量下降,响应时间暴涨。

一、传统并发模型的缺点
基于线程的并发


特点:每任务一线程直线式的编程使用资源昂高,context切换代价高,竞争锁昂贵太多线程可能导致吞吐量下降,响应时间暴涨。

基于事件的并发模型


特点:单线程处理事件每个并发流实现为一个有限状态机应用直接控制并发负载增加的时候,吞吐量饱和响应时间线性增长
二、SEDA架构

特点:(1)服务通过queue分解成stage: 每个stage代表FSM的一个状态集合 Queue引入了控制边界(2)使用线程池驱动stage的运行: 将事件处理同线程的创建和调度分离 Stage可以顺序或者并行执行 Stage可能在内部阻塞,给阻塞的stage分配较少的线程
1、Stage-可靠构建的基础

(1)应用逻辑封装到Event Handler 接收到许多事件,处理这些事件,然后派发事件加入其他Stage的queue 对queue和threads没有直接控制 Event queue吸纳过量的负载,有限的线程池维持并发(2)Stage控制器 负责资源的分配和调度 控制派发给Event Handler的事件的数量和顺序 Event Handler可能在内部丢弃、过滤、重排序事件。2、应用=Stage网络 (1)有限队列 入队可能失败,如果队列拒绝新项的话 阻塞在满溢的队列上来实现吸纳压力 通过丢弃事件来降低负载 (2) 队列将Stage的执行分解 引入了显式的控制边界 提供了隔离、模块化、独立的负载管理 (3)方便调试和profile 事件的投递可显 时间流可跟踪 通过监测queue的长度发现系统瓶颈3、动态资源控制器(1)、线程池管理器目标: 决定Stage合理的并发程度操作:观察queue长度,如果超过阀值就添加线程移除空闲线程

(2)、批量管理器目的:低响应时间和高吞吐量的调度操作:Batching因子:Stage一次处理的消息数量小的batching因子:低响应时间大的batching因子:高吞吐量尝试找到具有稳定吞吐量的最小的batching因子观察stage的事件流出率当吞吐量高的时候降低batching因子,低的时候增加

三、小结 SEDA主要还是为了解决传统并发模型的缺点,通过将服务器的处理划分各个Stage,利用queue连接起来形成一个pipeline的处理链,并且在Stage中利用控制器进行资源的调控。资源的调度依据运行时的状态监视的数据来进行,从而形成一种反应控制的机制,而stage的划分也简化了编程,并且通过queue和每个stage的线程池来分担高并发请求并保持吞吐量和响应时间的平衡。简单来说,我看中的是服务器模型的清晰划分以及反应控制。

因在阅读的过程中感觉非常好,所以转载该文章,转自庄周蝶梦

目录
相关文章
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
85 0
|
20天前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
65 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型最强架构TTT问世!斯坦福UCSD等5年磨一剑, 一夜推翻Transformer
【7月更文挑战第21天】历经五年研发,斯坦福、UCSD等顶尖学府联合推出TTT架构,革新NLP领域。此架构以线性复杂度处理长序列,增强表达力及泛化能力,自监督学习下,测试阶段动态调整隐藏状态,显著提升效率与准确性。实验显示,TTT在语言模型与长序列任务中超越Transformer,论文详述于此:[https://arxiv.org/abs/2407.04620](https://arxiv.org/abs/2407.04620)。尽管如此,TTT仍需克服内存与计算效率挑战。
166 2
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
79 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
3月前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
77 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
98 4
|
3月前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
86 6
|
3月前
|
机器学习/深度学习 数据采集
详解Diffusion扩散模型:理论、架构与实现
【9月更文挑战第23天】扩散模型(Diffusion Models)是一类基于随机过程的深度学习模型,通过逐步加噪和去噪实现图像生成,在此领域表现优异。模型分正向扩散和反向生成两阶段:前者从真实数据加入噪声至完全噪音,后者则学习从噪声中恢复数据,经由反向过程逐步还原生成清晰图像。其主要架构采用U-net神经网络,实现过程中需数据预处理及高斯噪声添加等步骤,最终通过模型逆向扩散生成新数据,具有广泛应用前景。
|
4月前
|
机器学习/深度学习 自然语言处理 数据处理