docker环境下安装tensorflow

简介: 下载tensorflow 镜像并运行[root@Ieat1 ~]# docker run -d --name tensorflow -it -p 8888:8888 tensorflow/tensorflowff716bcb8642e258eb7...

下载tensorflow 镜像并运行

[root@Ieat1 ~]# docker run -d  --name tensorflow -it -p 8888:8888 tensorflow/tensorflow
ff716bcb8642e258eb7007f3f0c6756a82998d2844df8b374df85c9faf1b0629

通过观察发现新建的notebook都在容器的/notebooks目录下,为了使notebook不丢失,我们可以把它放在宿主机的目录上,比如/data/tensorflow/notebooks,启动时指定卷
docker run -d --name tensorflow -v /data/tensorflow/notebooks:/notebooks -it -p 8888:8888 tensorflow/tensorflow

查看docker日志,发现提示我们访问地址 http://127.0.0.1:8888/?token=061bdda51d27eaab82049d1eda42bd63381a4c4d33eaee67

[root@Ieat1 ~]# docker logs -f tensorflow
[I 06:11:01.349 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret
[W 06:11:01.372 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
[I 06:11:01.383 NotebookApp] Serving notebooks from local directory: /notebooks
[I 06:11:01.383 NotebookApp] The Jupyter Notebook is running at:
[I 06:11:01.383 NotebookApp] http://(ff716bcb8642 or 127.0.0.1):8888/?token=061bdda51d27eaab82049d1eda42bd63381a4c4d33eaee67
[I 06:11:01.383 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 06:11:01.383 NotebookApp] 
    
    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        http://(ff716bcb8642 or 127.0.0.1):8888/?token=061bdda51d27eaab82049d1eda42bd63381a4c4d33eaee67

访问后看到 jupyter界面,我们可以在线编辑代码

jupyter介绍参考 https://www.jianshu.com/p/91365f343585

tf1.png

新建notebook


tf2.png

输入示例代码点击Run运行

import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型
# 
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.initialize_all_variables()

# 启动图 (graph)
sess = tf.Session()
sess.run(init)

# 拟合平面
for step in range(0, 201):
    sess.run(train)
    if step % 20 == 0:
        print step, sess.run(W), sess.run(b)

示例代码地址 http://www.tensorfly.cn/tfdoc/get_started/introduction.html

看到运行成功


tf3.png

参考 https://hub.docker.com/r/tensorflow/tensorflow/

目录
相关文章
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3635 3
|
20天前
|
关系型数据库 MySQL Docker
docker环境下mysql镜像启动后权限更改问题的解决
在Docker环境下运行MySQL容器时,权限问题是一个常见的困扰。通过正确设置目录和文件的权限,可以确保MySQL容器顺利启动并正常运行。本文提供了多种解决方案,包括在主机上设置正确的权限、使用Dockerfile和Docker Compose进行配置、在容器启动后手动更改权限以及使用 `init`脚本自动更改权限。根据实际情况选择合适的方法,可以有效解决MySQL容器启动后的权限问题。希望本文对您在Docker环境下运行MySQL容器有所帮助。
33 1
|
1月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
51 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
1月前
|
网络安全 虚拟化 Docker
SSH后判断当前服务器是云主机、物理机、虚拟机、docker环境
结合上述方法,您可以对当前环境进行较为准确的判断。重要的是理解每种环境的特征,并通过系统的响应进行综合分析。如果在Docker容器内,通常会有明显的环境标志和受限的资源视图;而在云主机或虚拟机上,虽然它们也可能是虚拟化的,但通常提供更接近物理机的体验,且可通过硬件标识来识别虚拟化平台。物理机则直接反映硬件真实信息,较少有虚拟化痕迹。通过这些线索,您应该能够定位到您所处的环境类型。
33 2
|
1月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
45 2
|
1月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
129 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
1月前
|
存储 监控 Shell
docker的底层原理二:容器运行时环境
本文深入探讨了Docker容器运行时环境的关键技术,包括命名空间、控制组、联合文件系统、容器运行时以及分离的进程树,这些技术共同确保了容器的隔离性、资源控制和可移植性。
39 5
|
1月前
|
jenkins Java 持续交付
Docker搭建jenkins环境
这篇文章详细介绍了如何利用Docker搭建Jenkins环境,包括拉取Jenkins镜像、配置端口映射及初始化设置的步骤。
148 0
Docker搭建jenkins环境
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
2月前
|
虚拟化 Docker Windows
window 10专业版部署docker环境
本文介绍了如何在Windows 10专业版上部署Docker环境,包括安装步骤、配置镜像加速以及可能遇到的错误处理。
142 2
window 10专业版部署docker环境