图像处理基础(一)-OpenCV相似度匹配

简介:

图像处理基础,等大小图片相似度匹配

基于RGB通道的像素点相似度匹配算法思路

def compare_by_RGB(image_1,image_2):
    """
    基于通道和的差  
    :param image_1:  
    :param image_2:
    :return:
    """
    G_1 = 0
    B_1 = 0
    R_1 = 0
    G_2 = 0
    B_2 = 0
    R_2 = 0
    #第一个图像矩阵通道和
    for x in image_1:
        for y in x:
            G_1 += y[0]
            B_1 += y[1]
            R_1 += y[2]
    #第二个图像矩阵通道和
    for x in image_2:
        for y in x:
            G_2 += y[0]
            B_2 += y[1]
            R_2 += y[2]
    #图像矩阵各通道相似度
    inc_G = 1 - math.fabs(G_1 - G_2) / G_2
    inc_B = 1 - math.fabs(B_1 - B_2) / B_2
    inc_R = 1 - math.fabs(R_1 - R_2) / R_2
    dec = (inc_G + inc_B + inc_R) / 3
    return dec

根据不相似的像素点统计

def compare_by_pixe(pic1, pic2):
    """
    方法二,基于像素点相似数量统计
    :param pic1:
    :param pic2:
    :return:totlepix 像素点个数,diffcount 相似度 ,nptg,ptg
    """
    res={}
    #获取行数列数和通道数
    sp1 = pic1.shape
    sp2 = pic2.shape
    #获取矩阵大小
    res['totlepix'] = pic1.size # pix*3 矩阵大小等于像素点数乘以3
    #判断两张图片的行列数是否相同
    if sp1 != sp2:
        ret = "The two picture is in Different range"
        return ret
    DiffCount = 0
    #遍历矩阵行和列
    for index1 in range(sp1[0]):
        for index2 in range(sp1[1]):
            (b1, g1, r1) = pic1[index1, index2]
            (b2, g2, r2) = pic2[index1, index2]
            if (b1, g1, r1) != (b2, g2, r2):
                DiffCount = DiffCount + 1
    res['totlepix'] = res['totlepix'] / 3
    #相似度=不同的像素点数/像素点总数
    res['diffcount'] =1- DiffCount/ res['totlepix']
    return res

主函数测试


if __name__=="__main__":
    #相似度阈值  
    threshold_value=0.75
    path="./lab1_data/lab1_video.mp4"
    cap=cv2.VideoCapture(path)
    count=0
    if cap.isOpened():
        #锁,用来判断是否为第一帧
        flag=False
        while 1:
            ret,frame=cap.read()
            #缩小图片
            image=cv2.resize(frame,(32,32),interpolation=cv2.INTER_CUBIC)
            if flag==True:
                res=compare_by_pixe(image, temp)
                if res["diffcount"]<threshold_value:
                    cv2.imwrite("./lab1_save_data/"+str(count)+".jpg",frame)
                    count += 1
                #记录当前帧
                temp=image
            if flag==False:
                flag=True
                temp=image
            cv2.imshow("image",frame)
            if cv2.waitKey(10)=='q':
                break
        cv2.destroyAllWindows()
目录
相关文章
|
3月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
137 7
基于qt的opencv实时图像处理框架FastCvLearn实战
|
7月前
|
openCL 开发工具 C语言
OpenCV 图像处理学习手册:6~7
OpenCV 图像处理学习手册:6~7
159 0
|
7月前
|
存储 编解码 算法
OpenCV 图像处理学习手册:1~5
OpenCV 图像处理学习手册:1~5
90 0
|
7月前
|
人工智能 Linux API
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
109 0
|
2月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
99 2
WK
|
4月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
54 4
|
7月前
|
缓存 算法 计算机视觉
OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG
1.概念介绍 视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。
316 0
|
7月前
|
人工智能 计算机视觉 Python
【OpenCV】计算机视觉图像处理基础知识(上)
【OpenCV】计算机视觉图像处理基础知识(上)
|
7月前
|
算法 计算机视觉
【OpenCV】计算机视觉图像处理基础知识(下)
【OpenCV】计算机视觉图像处理基础知识(下)
|
7月前
|
机器学习/深度学习 算法 Linux
使用OpenCV在Python中进行图像处理
使用OpenCV在Python中进行图像处理