NLPIR智能完美融合人工智能和自然语言处理

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: NLPIR大数据语义智能分析平台平台针对互联网内容处理的需要,融合了自然语言理解、网络搜索和文本挖掘的技术,提供了用于技术二次开发的基础工具集

  数据发展到今天,已不再是一个新的概念,基于大数据技术的应用也层出不穷,但作为一项发展前景广阔的技术,其很多作用还有待挖掘,比如为人们的生活带来方便,为企业带来更多利益等。现今,互联网上每日产生的数据已由曾经的TB级发展到了今天的PB级、EB级甚至ZB级。如此爆炸性的数据怎样去使用它,又怎样使它拥有不可估量的价值呢?这就需要不断去研究开发,让每天的数据“砂砾”变为“黄金”。那么如何才能将大量的数据存储起来,并加以分析利用呢,大数据技术应运而生。
  在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。
  数据管理理念不断变革,大数据成为信息技术发展的必然选择。随着现代信息传播技术手段和方式不断丰富,信息获取、信息传递、信息处理、信息再生、信息利用等功能应用日益多样化,智能化信息系统逐渐形成一个信息网络体系,人类社会的生产方式、工作方式、学习方式、交往方式、生活方式、思维方式等发生了极其深刻的变革,互动化、即时性、全媒体等,成为常态性的信息生态环境,传统的数据库组织架构和信息服务模式已经难以适应信息社会现实需要,整个信息技术架构的革命性重构势在必行,大数据成为信息技术发展的必由之路。
  灵玖软件NLPIR大数据语义智能分析平台针对中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,先后历时十八年,服务了全球四十万家机构用户,是大时代语义智能分析的一大利器。
  NLPIR大数据语义智能分析平台平台针对互联网内容处理的需要,融合了自然语言理解、网络搜索和文本挖掘的技术,提供了用于技术二次开发的基础工具集。
  NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。
  “大数据”的本质实际上是数据生产的社会化,其对统计尤其是政府统计的冲击是重大的,不仅涉及到整个统计流程,更加对当前的政府统计管理体制、机构设置、数据价值等方面形成了挑战。可以大胆预测,未来政府统计的政府角色会被统计专业性取代,经济分析的职能会被更为专业的经济分析部门取代,宏观数据的重要性会让位于更有信息价值的微观数据。

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 供应链
决策智能是新的人工智能平台吗?
决策智能融合数据、决策与行动,通过AI与自动化技术提升企业决策质量与效率,支持从辅助到自动化的多级决策模式,推动业务敏捷性与价值转化。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能:有多少人工,才能有多少智能?
当下AI大模型的能力,特别是Agent领域,到底离不开多少“人工”的加持?本文将结合我的实际经验,深入探讨高质量数据与有效评价体系在Agent发展中的决定性作用,并通过编码Agent、Web Agent和GUI Agent的成熟度分析,揭示AI智能体发展面临的挑战与机遇。
180 89
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
人机融合智能 | 以人为中心的人工智能伦理体系
本章探讨“以人为中心”的人工智能伦理体系,分析人工智能伦理与传统伦理学的关系、主要分支内容及核心原则。随着人工智能技术快速发展,其在推动社会进步的同时也引发了隐私、公平、责任等伦理问题。文章指出,人工智能伦理需融入传统伦理框架,并构建适应智能技术发展的新型伦理规范体系,以确保技术发展符合人类价值观和利益。
119 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人机融合智能 | 数据与知识双驱动式人工智能
本章系统介绍了数据驱动、知识驱动及双驱动人工智能的理论与应用。数据驱动方法依赖大数据和深度学习,在图像识别、自然语言处理等领域取得突破,但面临标注成本高、可解释性差等问题。知识驱动方法通过知识表示与推理提升系统理解能力,却在泛化性和适应性上受限。为弥补单一范式的不足,数据与知识双驱动融合两者优势,致力于构建更智能、可解释且安全可靠的AI系统,兼顾伦理与隐私保护。文章还回顾了AI发展历程,从早期神经网络到当前大规模语言模型(如GPT、BERT)的技术演进,深入解析了各类机器学习与深度学习模型的核心原理与应用场景,展望未来AI发展的潜力与挑战。
181 0
|
3月前
|
机器学习/深度学习 人工智能 算法
人机融合智能 | 以人为中心人工智能新理念
本文探讨了“以人为中心的人工智能”(HCAI)理念,强调将人的需求、价值和能力置于AI设计与开发的核心。HCAI旨在确保AI技术服务于人类,增强而非取代人类能力,避免潜在危害。文章分析了AI的双刃剑效应及其社会挑战,并提出了HCAI的设计目标与实施路径,涵盖技术、用户和伦理三大维度。通过系统化方法,HCAI可推动AI的安全与可持续发展,为国内外相关研究提供重要参考。
226 3
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
8月前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
227 20
|
10月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
1481 1
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
|
11月前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
255 4
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
180 1