阿里云自然语言处理--智能文本分类(基础版-新闻领域)Quick Start

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。智能文本分类可将用户输入的一段文本自动映射到具体的类目上,帮助用户快速完成文本的分类,并针对文本中的关键标签进行识别和提取。支持平层类目体系或者以树状形式组织的层次类目体系,当前系统内置两种默认分类体系可直接使用:新闻资讯领域内类类目体系、电商领域类目体系。本文将使用Java CommonSDK演示智能文本分类服务的快速调用以供参考。

使用前提与环境准备:服务开通与购买


Step By Step

1.参考API文档与公共参数文档获取相应请求参数

wQjQ4MUQucG5n.png

  • 公共参数说明

NjIucG5n.png

2.添加pom依赖

        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-core</artifactId>
            <version>4.5.25</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-nlp-automl</artifactId>
            <version>0.0.5</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-alinlp</artifactId>
            <version>1.0.16</version>
       </dependency>

2.Code Sample

import com.aliyuncs.CommonRequest;
import com.aliyuncs.CommonResponse;
import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.exceptions.ClientException;
import com.aliyuncs.exceptions.ServerException;
import com.aliyuncs.profile.DefaultProfile;

//自然语言处理之智能文本分类(新闻) common request 示例

public class ZinWenbf {
    public static void main(String[] args) {
        // 创建DefaultAcsClient实例并初始化
        DefaultProfile defaultProfile = DefaultProfile.getProfile(
                "cn-hangzhou",
                "XXXXXXXXXX",
                "XXXXXXXXXX");
        IAcsClient client = new DefaultAcsClient(defaultProfile);
        // 创建API请求并设置参数
        CommonRequest request = new CommonRequest();
        // domain和version是固定值
        request.setDomain("alinlp.cn-hangzhou.aliyuncs.com");
        request.setVersion("2020-06-29");
        //action name可以在API文档里查到
        request.setSysAction("GetTcChGeneral");//注意此行如果版本依赖是3.5.0会报错
        //put的参数可以在API文档查看到
        request.putQueryParameter("ServiceCode", "alinlp");
        //request.putQueryParameter("Text", "这是一条文本");
        //request.putQueryParameter("TokenizerId", "MAINSE");
        request.putQueryParameter("Text", "这是一段新闻内容");
        try {
            CommonResponse response = client.getCommonResponse(request);
            System.out.println(response.getData());
        } catch (ServerException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (ClientException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}

3.测试结果

{"RequestId":"0F195033-3AA1-5847-9567-5095801570D8","Data":"{\"result\":{\"labelName\":\"文娱\"},\"success\":true,\"tracerId\":\"56e8f03395827b8c65135806d0afb1b7\"}"}

更多参考

快速入门
API参考-智能文本分类(新闻)
SDK示例
阿里云自然语言处理PHP Core SDK使用Quick Start

目录
相关文章
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
springboot基于人工智能和自然语言理解技术的医院智能导医系统源码
智能导诊系统可为患者提供线上挂号智能辅助服务,患者根据提示手动输入自己的基本症状,通过智能对话方式,该系统会依据大数据一步步帮助患者“诊断”,并最终推荐就医的科室和相关专家。患者可自主选择,实现“一键挂号”。这一模式将精确的导诊服务前置,从源头上让医疗服务更高效。
484 2
|
1月前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
197 21
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
自然语言处理中的文本分类技术深度解析
【7月更文挑战第31天】文本分类作为自然语言处理领域的重要技术之一,正不断推动着智能信息处理的发展。随着深度学习技术的不断成熟和计算资源的日益丰富,我们有理由相信,未来的文本分类技术将更加智能化、高效化、普适化,为人类社会带来更加便捷、精准的信息服务。
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP-新闻文本分类】处理新闻文本分类所有开源解决方案汇总
汇总了多个用于新闻文本分类的开源解决方案,包括TextCNN、Bert、LSTM、CNN、Transformer以及多模型融合方法。
202 1
|
6月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
115 1
|
6月前
|
机器学习/深度学习 数据采集 监控
【NLP-新闻文本分类】2特征工程
本文讨论了特征工程的重要性和处理流程,强调了特征工程在机器学习中的关键作用,并概述了特征工程的步骤,包括数据预处理、特征提取、特征处理、特征选择和特征监控。
55 1
|
6月前
|
数据采集 自然语言处理 数据挖掘
【NLP-新闻文本分类】1 数据分析和探索
文章提供了新闻文本分类数据集的分析,包括数据预览、类型检查、缺失值分析、分布情况,指出了类别不均衡和句子长度差异等问题,并提出了预处理建议。
109 1
|
6月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】深度学习的NLP文本分类常用模型
本文详细介绍了几种常用的深度学习文本分类模型,包括FastText、TextCNN、DPCNN、TextRCNN、TextBiLSTM+Attention、HAN和Bert,并提供了相关论文和不同框架下的实现源码链接。同时,还讨论了模型的优缺点、适用场景以及一些优化策略。
309 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
智能时代的桥梁:自然语言处理技术在人工智能中的应用
随着人工智能技术的飞速发展,自然语言处理(NLP)作为其核心领域之一,已广泛应用于多个行业。本文将深入探讨NLP的基本概念、关键技术以及其在现代AI系统中的应用实例,旨在揭示NLP如何成为连接人类与机器的桥梁,推动智能技术向前迈进。
132 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
Python自然语言处理实战:文本分类与情感分析
本文探讨了自然语言处理中的文本分类和情感分析技术,阐述了基本概念、流程,并通过Python示例展示了Scikit-learn和transformers库的应用。面对多义性理解等挑战,研究者正探索跨域适应、上下文理解和多模态融合等方法。随着深度学习的发展,这些技术将持续推动人机交互的进步。
419 1

热门文章

最新文章