MaxCompute+ Geabase 大话健康知识图谱取经之路

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 小叽导语:正如Google的高级搜索副总裁Amit Singhal在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.” 大千世界,万物相联,借助知识图谱,实现了搜索领域的things, not strings。

小叽导语:正如Google的高级搜索副总裁Amit Singhal在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.” 大千世界,万物相联,借助知识图谱,实现了搜索领域的things, not strings。保险领域的知识图谱之路,何去何从呢?

背景

随着互联网和AI智能的发展,近年来我国的健康险业务迎来了飞速发展和变革。健康险,即健康保险,是保险业务的一个重要分支,有着广阔的发展前景,是本财年保险领域排兵布阵的重要战场。健康险是以被保险人的身体为保险标的,依据合同约定当被保险人遭遇疾病或意外伤害时,对被保险人的医疗费用或财产损失进行补偿或给付的一种保险。

为了支撑日益剧增的理赔单量的挑战,在不增加客服小二工作量的前提下,健康险理赔需要做到智能化、自动化和低风险化。因此,理赔天平团队在智能理赔、理赔机器智能问答和反骗赔等方面做出了相应尝试,而健康险知识图谱是以上各种尝试所依赖的底层基础技术。

本文首先介绍了健康知识图谱构建流程、整体框架和遇到的问题,然后总结了健康知识图谱在保险理赔领域应用场景和对应的玩法。

健康知识图谱和Schema示例

图1 健康知识图谱样例

健康知识图谱样例如图1所示,其中存储着用户、险种、疾病、医院等各类节点信息以及它们之间的关联信息。比如,用户张三投保了门诊保险金,当该用户患慢性肺炎申请理赔时,我们可以根据图谱来判断购买的险种对慢性肺炎时免责的,进行智能拒赔即可。

健康知识图谱的具体节点和边属性如下:

健康知识图谱整体框架

图2 健康知识图谱整体技术框架

健康知识图谱整体框架如图2所示,主要由信息源、实体抽取、数据源、更新框架和数据存储和质量控制等部分组成,具体如下:

1、信息源

保单类:用户购买的保单信息,包含用户、险种、时间、保障疾病范围等信息。

外部网站数据:通过爬虫,可以获取各种渠道的信息,包括医院信息、科室信息等。

2、实体/关系抽取

信息源有很多形式,包括图片、文字、语音、视频等类型,需要从中提取有用的实体信息和实体关系。这部分可以通过机器学习(包括深度学习、规则引擎等)或者人工方式实现。

3、数据源

数据源包括各种类型的数据,包括上传的文件、ODPS中的用户画像信息、关系型数据库中的数据、事件或日志等。

4、更新框架

一般通过三种方式将提取的数据导入到Geabase中,如下图所示:

初始化方式,将全量数据写入ODPS表某个分区中,全量初始化导入Geabase。

T+1批量更新方式,通过MR Job定时任务将更新数据写入最新分区中,每天批量新增、更新和删除Geabase中数据。

实时更新,将更新的数据发送到事件系统或者日志搜集系统,然后实时消费,将数据更新到Geabase数据库中。

5、数据存储

Geabase为了实现对数据进行分布式存储和计算,将整个图按节点分割为多个子图,每个子图存放在同一个shard中,每个shard都有自己的备份。Geabase数据库线上存储的都是有向边,如果需要存储无向边,则需要存储两份,即正向和反向都要进行存储。

Geabase在分块过程中,对于交界处的边,Geabase会同时生成2条边,即一条出边和一条入边,分别属于相邻的两个Shard。

6、保障机制

数据抽样/校验:对更新数据(批量或者实时)进行随机抽取特定比例的样本,进行校验,来验证数据导入准确性。

日志监控:对Geabase更新异常、查询性能等进行实时监控。

开关:可以利用开关控制数据版本,来决定采用哪个版本的稳定数据。另外,对接口或者流程中的某些环节进行开关切换控制。

应用场景

智能系统理赔

将险种和疾病之间的免责/非免责关系,作为理赔因子,加入到系统智能核赔规则中,完善智能理赔。

比如,用户张三购买了门诊报销金险种,进行理赔慢性肺炎时,会从图谱中查看门诊报销金和慢性肺炎的关系-免责,因此会在理赔系统审核阶段的规则引擎中直接拒掉,无需进入人工审核,实现快赔快拒。

智能问答

在热线工作台或者机器人端应用时,当用户咨询某种疾病是否可以理赔或者投保时,可以将图谱和知识库、模版库相结合,实现智能问答,提升小二工作效率或者减少小二工作量。

机器人端

反骗赔

场景1:

利用知识推理算法,比如用户1的周边用户(用户10-用户14)都是灰度骗赔用户,则用户1骗赔的概率就很大,存在骗赔风险。

场景2:

比如用户1的一代和二代直系亲属都没有多指症(属于先天性遗传病),那么用户1患这种先天性疾病的概率就比较小,存在骗赔风险。

另外,还可以通过用户的报案位置和医院位置就行判断骗赔的风险。

个性化推荐

可以根据张三的一度(甚至可以扩展到二度、三度)关系中,查找和张三用户画像比较类似的朋友,将他们购买的险种推荐给张三。

未来展望

下一步,我们主要从以下几个方面提升知识图谱价值:

提高数据覆盖率,存储更加丰富的海量数据。

利用知识推理算法,挖掘健康图谱数据价值。

将图谱进行平台化,扩展到其他领域。

References:

[1] Ehrlinger L, W W. Towards a Definition of Knowledge Graphs[C]// JointProceedings of the Posters and Demos Track of, International Conference onSemantic Systems - Semantics2016 and, International Workshop on Semantic Change& Evolving Semantics. 2016.

[2] Das R, Neelakantan A, Belanger D, et al. Chains of Reasoning over Entities,Relations, and Text using Recurrent Neural Networks[J]. 2016:132-141.

[3] https://docs.antfin.com/geabase/docs

转载

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
20天前
|
DataWorks 搜索推荐 数据挖掘
DataWorks: 驾驭数据浪潮,解锁用户画像分析新纪元
本文详细评测了DataWorks产品,涵盖最佳实践、用户体验、与其他工具对比及Data Studio新功能。内容涉及用户画像分析、数据管理作用、使用过程中的问题与改进建议,以及Data Studio的新版Notebook环境和智能助手Copilot的体验。整体评价肯定了DataWorks在数据处理和分析上的优势,同时也指出了需要优化的地方。
92 24
|
4月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
7月前
|
存储 分布式计算 大数据
MaxCompute:大数据计算的新篇章
MaxCompute:大数据计算的新篇章
109 2
|
7月前
|
边缘计算 分布式计算 安全
MaxComputer:未来计算的新篇章
MaxComputer:未来计算的新篇章
|
SQL 存储 分布式计算
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
|
人工智能 分布式计算 MaxCompute
《MaxCompute赋能人工智能-PAI平台介绍》电子版地址
MaxCompute赋能人工智能-PAI平台介绍
113 0
《MaxCompute赋能人工智能-PAI平台介绍》电子版地址
|
分布式计算 大数据 MaxCompute
《互联网下半场的角逐,玩转轻资产的大数据服务—MaxCompute在高德大数据的应用》电子版地址
互联网下半场的角逐,玩转轻资产的大数据服务—MaxCompute在高德大数据的应用
122 0
《互联网下半场的角逐,玩转轻资产的大数据服务—MaxCompute在高德大数据的应用》电子版地址
|
DataWorks
《数加平台-DataWorks阿里下一代智能数据工场》电子版地址
数加平台-DataWorks阿里下一代智能数据工场
144 0
《数加平台-DataWorks阿里下一代智能数据工场》电子版地址
|
存储 SQL 人工智能
3.基于 DataWorks 的大数据&AI解决方案|学习笔记
快速学习3.基于 DataWorks 的大数据&AI解决方案
3.基于 DataWorks 的大数据&AI解决方案|学习笔记
|
存储 SQL 弹性计算
EB级云智能数据仓库MaxCompute的聪明买与智慧用 | 2020 大数据技术公开课第二季
本季的三次课程将帮助企业和开发者在大数据计算方面做到更聪明的购买资源和更智慧的管理使用资源。
1709 0
EB级云智能数据仓库MaxCompute的聪明买与智慧用 | 2020 大数据技术公开课第二季