CTF数据分析题-抓到你了

简介: 版权声明:转载请注明出处:http://blog.csdn.net/dajitui2024 https://blog.csdn.net/dajitui2024/article/details/79396491 ...
版权声明:转载请注明出处:http://blog.csdn.net/dajitui2024 https://blog.csdn.net/dajitui2024/article/details/79396491

实验链接:http://www.shiyanbar.com/ctf/1813
数据包样本:http://ctf5.shiyanbar.com/misc/zhua

题目:Hint:入侵者通过 ping 工具对局域网内一主机进行存活性扫描, flag 为入侵所 发送的 16 字节的数据包内容。

分析:根据题目来看,ping,这句话告诉我们,一定要关注icmp包。因为ping发出的是icmp包
--详见网络基础。可以参考CCNA学习体系或者HCNA学习体系。当然,这里因为私心推荐了华为的clickHere

flag为16字节的数据,告诉我们。找一个16bytes的内容。范围已经缩小很多。
这是一个数据包分析的题目。

操作:下载数据包样本。下载以后,发现是个无后缀的文件,根据题目提醒,既然是数据包,那么后缀为pcap,因为wireshark数据分析包的后缀就是这个。
双击打开这个数据包,在wireshark的过滤框输入icmp回车。


过滤包

挨个双击包进行查看,单击也可以。第一个包是正常的,没有看到异常data,从第二个包开始,最后一部分出现了一个16bytes的内容。


发现flag

data已经被发现了,直接把这串数字复制出来,粘贴到答题框提交即可。如果直接复制值,需要去掉分号。
一开始我没有去掉分号,耽误了很长时间。

相关文章
CTF数据分析题:A记录
版权声明:转载请注明出处:http://blog.csdn.net/dajitui2024 https://blog.csdn.net/dajitui2024/article/details/79396493 原题:http://www.shiyanbar.com/ctf/1853数据包:http://ctf5.shiyanbar.com/misc/shipin.cap 题目:他在看什么视频,好像很好看,不知道是什么网站的。
1355 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
82 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
183 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
87 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
13天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
29 2
|
2月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
59 5
|
3月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
125 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
76 1
|
4月前
|
数据挖掘 PyTorch TensorFlow
Python数据分析新纪元:TensorFlow与PyTorch双剑合璧,深度挖掘数据价值
【7月更文挑战第30天】随着大数据时代的发展,数据分析变得至关重要,深度学习作为其前沿技术,正推动数据分析进入新阶段。本文介绍如何结合使用TensorFlow和PyTorch两大深度学习框架,最大化数据价值。
109 8
下一篇
无影云桌面