python堆排序

简介: 堆排序介绍 堆排序,顾名思义,就是基于堆。因此先来介绍一下堆的概念。 堆分为最大堆和最小堆,其实就是完全二叉树。

堆排序介绍

堆排序,顾名思义,就是基于堆。因此先来介绍一下堆的概念。
堆分为最大堆和最小堆,其实就是完全二叉树。最大堆要求节点的元素都要大于其孩子,最小堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求,其实很好理解。有了上面的定义,我们可以得知,处于最大堆的根节点的元素一定是这个堆中的最大值。其实我们的堆排序算法就是抓住了堆的这一特点,每次都取堆顶的元素,将其放在序列最后面,然后将剩余的元素重新调整为最大堆,依次类推,最终得到排序的序列。

这里写图片描述

步骤:
堆排序就是把堆顶的最大数取出,
将剩余的堆继续调整为最大堆,具体过程在第二块有介绍,以递归实现
剩余部分调整为最大堆后,再次将堆顶的最大数取出,再将剩余部分调整为最大堆,这个过程持续到剩余数只有一个时结束
#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import time,random
def sift_down(arr, node, end):
    root = node
    #print(root,2*root+1,end)
    while True:
        # 从root开始对最大堆调整

        child = 2 * root +1  #left child
        if child  > end:
            #print('break',)
            break
        print("v:",root,arr[root],child,arr[child])
        print(arr)
        # 找出两个child中交大的一个
        if child + 1 <= end and arr[child] < arr[child + 1]: #如果左边小于右边
            child += 1 #设置右边为大

        if arr[root] < arr[child]:
            # 最大堆小于较大的child, 交换顺序
            tmp = arr[root]
            arr[root] = arr[child]
            arr[child]= tmp

            # 正在调整的节点设置为root
            #print("less1:", arr[root],arr[child],root,child)

            root = child #
            #[3, 4, 7, 8, 9, 11, 13, 15, 16, 21, 22, 29]
            #print("less2:", arr[root],arr[child],root,child)
        else:
            # 无需调整的时候, 退出
            break
    #print(arr)
    print('-------------')

def heap_sort(arr):
    # 从最后一个有子节点的孩子还是调整最大堆
    first = len(arr) // 2 -1
    for i in range(first, -1, -1):
        sift_down(arr, i, len(arr) - 1)
    #[29, 22, 16, 9, 15, 21, 3, 13, 8, 7, 4, 11]
    print('--------end---',arr)
    # 将最大的放到堆的最后一个, 堆-1, 继续调整排序
    for end in range(len(arr) -1, 0, -1):
        arr[0], arr[end] = arr[end], arr[0]
        sift_down(arr, 0, end - 1)
        #print(arr)
def main():
    # [7, 95, 73, 65, 60, 77, 28, 62, 43]
    # [3, 1, 4, 9, 6, 7, 5, 8, 2, 10]
    #l = [3, 1, 4, 9, 6, 7, 5, 8, 2, 10]
    #l = [16,9,21,13,4,11,3,22,8,7,15,27,0]
    array = [16,9,21,13,4,11,3,22,8,7,15,29]
    #array = []
    #for i in range(2,5000):
    #    #print(i)
    #    array.append(random.randrange(1,i))

    print(array)
    start_t = time.time()
    heap_sort(array)
    end_t = time.time()
    print("cost:",end_t -start_t)
    print(array)
    #print(l)
    #heap_sort(l)
    #print(l)


if __name__ == "__main__":
    main()

 dataset = [16,9,21,3,13,14,23,6,4,11,3,15,99,8,22]

 for i in range(len(dataset)-1,0,-1):
     print("-------",dataset[0:i+1],len(dataset),i)
     #for index in range(int(len(dataset)/2),0,-1):
     for index in range(int((i+1)/2),0,-1):
         print(index)
         p_index = index

         l_child_index = p_index *2 - 1
         r_child_index = p_index *2
         print("l index",l_child_index,'r index',r_child_index)
         p_node = dataset[p_index-1]
         left_child =  dataset[l_child_index]

         if p_node < left_child:  # switch p_node with  left child
             dataset[p_index - 1], dataset[l_child_index] = left_child, p_node
             # redefine p_node after the switch ,need call this val below
             p_node = dataset[p_index - 1]

         if r_child_index < len(dataset[0:i+1]): #avoid right out of list index range
         #if r_child_index < len(dataset[0:i]): #avoid right out of list index range
             #print(left_child)
             right_child =  dataset[r_child_index]
             print(p_index,p_node,left_child,right_child)

             # if p_node <  left_child: #switch p_node with  left child
             #     dataset[p_index - 1] , dataset[l_child_index] = left_child,p_node
             #     # redefine p_node after the switch ,need call this val below
             #     p_node = dataset[p_index - 1]
             #
             if p_node < right_child: #swith p_node with right child
                 dataset[p_index - 1] , dataset[r_child_index] = right_child,p_node
                 # redefine p_node after the switch ,need call this val below
                 p_node = dataset[p_index - 1]

         else:
             print("p node [%s] has no right child" % p_node)


     #最后这个列表的第一值就是最大堆的值,把这个最大值放到列表最后一个, 把神剩余的列表再调整为最大堆

     print("switch i index", i, dataset[0], dataset[i] )
     print("before switch",dataset[0:i+1])
     dataset[0],dataset[i] = dataset[i],dataset[0]
     print(dataset)
目录
相关文章
|
8月前
|
算法 Python
用 Python 实现堆排序。
用 Python 实现堆排序。
51 3
|
算法 搜索推荐 Python
Python算法——堆排序
Python算法——堆排序
84 2
|
算法 搜索推荐 索引
|
移动开发 算法 搜索推荐
python实现【堆排序】(Heap Sort)
python实现【堆排序】(Heap Sort)
|
Python
Python编程:heapq模块堆排序
堆是一个二叉树,其中每个父节点的值都小于或等于其所有子节点的值。 整个堆的最小元素总是位于二叉树的根节点。 python的heapq模块提供了对堆的支持。 堆数据结构最重要的特征是heap[0]永远是最小的元素
82 0
|
存储 搜索推荐 Python
Python编程:排序算法之堆排序
Python编程:排序算法之堆排序
171 0
Python编程:排序算法之堆排序
|
Python
Python堆排序介绍与力扣三道堆相关题目分享
Python堆排序介绍与力扣三道堆相关题目分享
228 0
|
Python
Python编程:heapq模块堆排序
Python编程:heapq模块堆排序
141 0
|
28天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!