我用 tensorflow 实现的“一个神经聊天模型”:一个基于深度学习的聊天机器人

简介: 概述这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot). 它使用了循环神经网络(seq2seq 模型)来进行句子预测。

概述

这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot).
它使用了循环神经网络(seq2seq 模型)来进行句子预测。它是用 python 和 TensorFlow 开发。

程序的加载主体部分是参考 Torch的 neuralconvo from macournoyer.

现在, DeepQA 支持一下对话语料:
* Cornell Movie Dialogs corpus (default). Already included when cloning the repository.
* OpenSubtitles (thanks to Eschnou). Much bigger corpus (but also noisier). To use it, follow those instructions and use the flag --corpus opensubs.
* Supreme Court Conversation Data (thanks to julien-c). Available using --corpus scotus. See the instructions for installation.
* Ubuntu Dialogue Corpus (thanks to julien-c). Available using --corpus ubuntu. See the instructions for installation.
* Your own data (thanks to julien-c) by using a simple custom conversation format (See here for more info).

To speedup the training, it’s also possible to use pre-trained word embeddings (thanks to Eschnou). More info here.

安装

这个程序需要一下依赖(easy to install using pip: pip3 install -r requirements.txt):
* python 3.5
* tensorflow (tested with v1.0)
* numpy
* CUDA (for using GPU)
* nltk (natural language toolkit for tokenized the sentences)
* tqdm (for the nice progression bars)

你可能需要下载附带的数据让 nltk 正常工作。

python3 -m nltk.downloader punkt

Cornell 数据集已经包括了。其他的数据集查看 readme 文件到他们所在的文件夹。 (在 data/).

网站接口需要一些附加的包:

  • django (tested with 1.10)
  • channels
  • Redis (see here)
  • asgi_redis (at least 1.0)

Docker 安装也是支持的,更多详细的教程参考 here.

运行

聊天机器人

训练这个模型,直接运行 main.py 。一旦训练完成,你可以测试结果用 main.py --test
(结果生成在 ‘save/model/samples_predictions.txt’) 或者用 main.py --test interactive (更有趣).

Here are some flags which could be useful. For more help and options, use python main.py -h:
* --modelTag <name>: allow to give a name to the current model to differentiate between them when testing/training.
* --keepAll: use this flag when training if when testing, you want to see the predictions at different steps (it can be interesting to see the program changes its name and age as the training progress). Warning: It can quickly take a lot of storage space if you don’t increase the --saveEvery option.
* --filterVocab 20 or --vocabularySize 30000: Limit the vocabulary size to and optimize the performances and memory usage. Replace the words used less than 20 times by the <unknown> token and set a maximum vocabulary size.
* --verbose: when testing, will print the sentences as they are computed.
* --playDataset: show some dialogue samples from the dataset (can be use conjointly with --createDataset if this is the only action you want to perform).

To visualize the computational graph and the cost with TensorBoard, just run tensorboard --logdir save/.

默认的这个网络架构是一个标准的 encoder/decoder 有两个 LSTM layers (隐藏层大小 256) ,然后 vocabulary 的 embedding size 是 32.这个网络用 ADAM 训练。最大的句子长度设置为 10个单词,但是可以增加。

结果

当然,这个网络并不会很擅长聊天:

Q: Hi
A: Hi.

Q: What is your name ?
A: Laura.

Q: What does that mean ?
A: I dunno.

Q: How old are you ?
A: thirty-five.

Q: Will Google hire me ?
A: No.

Q: Tell me the alphabet
A: Fuck you.

Q: That's not nice
A: Yeah.

这里有一些情况它并不能正确回答:

Q: Who is Laura ?
A: My brother.

Q: Say 'goodbye'
A: Alright.

Q: What is cooking ?
A: A channel.

Q: Can you say no ?
A: No.

Q: Two plus two
A: Manny...

预训练模型

项目截图:

chatbot_miniature.png

实测截图:

Screenshot from 2017-09-05 14-47-52.png

一步一步教程:

1.下载这个项目:
https://github.com/Conchylicultor/DeepQA
2.下载训练好的模型:
https://drive.google.com/file/d/0Bw-phsNSkq23OXRFTkNqN0JGUU0/view
(如果网址不能打开的话,今晚我会上传到百度网盘,分享到:http://www.tensorflownews.com/
3.解压之后放在 项目 save 目录下
如图所示

Screenshot from 2017-09-05 14-52-13.png

4.复制 save/model-pretrainedv2/dataset-cornell-old-lenght10-filter0-vocabSize0.pkl 这个文件到 data/samples/

如图所示:

Screenshot from 2017-09-05 14-55-00.png

5.在项目目录执行一下命令:

python3 main.py --modelTag pretrainedv2 --test interactive

程序读取了预训练的模型之后,如图:

Screenshot from 2017-09-05 14-57-14.png

聊天机器人资源合集

项目,语聊,论文,教程
https://github.com/fendouai/Awesome-Chatbot

更多教程:

http://www.tensorflownews.com/

DeepQA

https://github.com/Conchylicultor/DeepQA

备注:为了更加容易了解这个项目,说明部分翻译了项目的部分 readme ,主要是介绍使用预处理数据来运行这个项目。

目录
相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
91 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
44 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
54 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
29天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
110 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 传感器 算法
深度学习之基于视觉的机器人导航
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。
58 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
61 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
108 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
1月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
85 0
下一篇
无影云桌面