TensorFlow 卷积神经网络手写数字识别数据集介绍

简介: 欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!手写数字识别接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。

欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!

手写数字识别

接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。

数据准备

  • MNIST 数据集下载

MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载。
网址:http://yann.lecun.com/exdb/mnist/

train-images-idx3-ubyte.gz: 训练集图片
train-labels-idx1-ubyte.gz: 训练集列标
t10k-images-idx3-ubyte.gz: 测试集图片
t10k-labels-idx1-ubyte.gz: 测试集列标

TensorFlow 有加载 MNIST 数据库相关的模块,可以在程序运行时直接加载。

代码如下:

from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as pyplot

#引入 MNIST 数据集
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

#选取训练集中的第 1 个图像的矩阵
mnist_one=mnist.train.images[0]

#输出图片的维度,结果是:(784,)
print(mnist_one.shape)

#因为原始的数据是长度是 784 向量,需要转换成 28*28 的矩阵。
mnist_one_image=mnist_one.reshape((28,28))

#输出矩阵的维度
print(mnist_one_image.shape)

#使用 matplotlib 输出为图片
pyplot.imshow(mnist_one_image)

pyplot.show()

代码的输出依次是:
1.单个手写数字图片的维度:
(784,)

2.转化为二维矩阵之后的打印结果:
(28, 28)

3.使用 matplotlib 输出为图片

模型实现

TensorFlow conv2d 函数介绍:

tf.nn.conv2d(x, W, strides, padding=’SAME’)
针对输入的 4 维数据 x 计算 2 维卷积。

参数 x:
4 维张量,每一个维度分别是 batch,in_height,in_height,in_channels。
[batch, in_height, in_width, in_channels]

灰度图像只有 2 维来表示每一个像素的值,彩色图像每一个像素点有 3 通道的 RGB 值,所以一个彩色图片转化成张量后是 3 维的,分别是长度,宽度,颜色通道数。又因为每一次训练都是训练都是输入很多张图片,所以,多个 3 维张量组合在一起变成了 4 维张量。

参数 w:
过滤器,因为是二维卷积,所以它的维度是:

[filter_height, filter_width, in_channels, out_channels]

与参数 x 对应,前 3 个参数分别是对应 x 的 filter_height, filter_width, in_channels,最后一个参数是过滤器的输出通道数量。

参数 strides:
1 维长度为 4 的张量,对应参数 x 的 4 个维度上的步长。

参数 padding:
边缘填充方式,主要是 “SAME”, “VALID”,一般使用 “SAME”。

卷积层简单封装
# 池化操作
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
TensorFlow max_pool 函数介绍:

tf.nn.max_pool(x, ksize, strides ,padding)

参数 x:
和 conv2d 的参数 x 相同,是一个 4 维张量,每一个维度分别代表 batch,in_height,in_height,in_channels。

参数 ksize:
池化核的大小,是一个 1 维长度为 4 的张量,对应参数 x 的 4 个维度上的池化大小。

参数 strides:
1 维长度为 4 的张量,对应参数 x 的 4 个维度上的步长。

参数 padding:
边缘填充方式,主要是 “SAME”, “VALID”,一般使用 “SAME”。

接下来将会使用 TensorFlow 实现以下结构的卷积神经网络:

下一篇文章,将会用 TensorFlow 实现这个卷积神经网络。

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!

目录
相关文章
|
5天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】32. 卷积神经网络之稠密连接网络(DenseNet)介绍及其Pytorch实现
【从零开始学习深度学习】32. 卷积神经网络之稠密连接网络(DenseNet)介绍及其Pytorch实现
|
5天前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
5天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
|
1天前
|
机器学习/深度学习 网络架构 计算机视觉
VGG深度卷积神经网络架构
VGG深度卷积神经网络架构
|
4天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
|
4天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
|
5天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
5天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
|
1月前
|
机器学习/深度学习 算法 PyTorch
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
63 0
|
1月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化

热门文章

最新文章