HTAP数据库 PostgreSQL 场景与性能测试之 46 - (OLTP) 大json字段的高并发更新

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 数据量与性能的线性关系(10亿+无衰减), 暨单表多大需要分区 (OLTP)

1、背景

很多时候用户可能使用PG的NOSQL特性,简化开发工作量,例如JSON类型,有些业务不仅仅需要存JSON,可能还需要对JSON内的字段进行修改。

这个测试回答用户几个问题:

1、JSON字段支持多大,回答,变长字段,最大支持压缩后存储1GB。内置PGLZ压缩算法。

2、高并发更新大JSON字段时,性能如何。

2、设计

单表记录数:千万

单个JSON:约2KB

3、准备测试表

postgres=# create table test(id int primary key, info jsonb);  
CREATE TABLE  

4、准备测试函数(可选)

用于生成任意长度(任意个KEY)的JSON。

create or replace function gen_json(int) returns jsonb as $$  
  select jsonb_agg(row_to_json(t)) from (select 'id'||id c1, md5(random()::text) c2 from generate_series(1,$1) t(id))t;   
$$ language sql strict;  
CREATE FUNCTION  

示例

postgres=# select gen_json(2);  
                                                      gen_json                                                        
--------------------------------------------------------------------------------------------------------------------  
 [{"c1": "id1", "c2": "02757c642789b76abf3f3551080c0a13"}, {"c1": "id2", "c2": "89bef7a80e378606897c2fd9e91bd889"}]  
(1 row)  

5、准备测试数据

写入1000万条测试数据,每个JSON字段约2KB

postgres=# insert into test select generate_series(1,10000000), gen_json(40);  
INSERT 0 10000000  
  
postgres=# select pg_column_size(info) from test limit 1;  
 pg_column_size   
----------------  
           1617  
(1 row)  

6、准备测试脚本

1、更新JSON内容测试(由于PG为多版本,所以直接使用下面的方法,测试效果和更新是一样的)

vi test.sql  
  
\set id random(1,10000000)  
update test set info=info where id=:id;   

7、测试

测试脚本

CONNECTS=32       
TIMES=120        
export PGHOST=$PGDATA        
export PGPORT=1921        
export PGUSER=postgres        
export PGPASSWORD=postgres        
export PGDATABASE=postgres        
        
pgbench -M prepared -n -r -P 5 -f ./test.sql -c $CONNECTS -j $CONNECTS -T $TIMES        

8、测试结果

1、查询测试TPS

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 120  
  
transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 120 s  
number of transactions actually processed: 12076455  
latency average = 0.318 ms  
latency stddev = 1.394 ms  
tps = 100617.926372 (including connections establishing)  
tps = 100624.454244 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.005  \set id random(1,10000000)  
         0.313  update test set info=info where id=:id;   

性能小结

数据量 更新JSON TPS
1000万 10万

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
存储 Java 数据库连接
时序数据库TDengine 3.3.5.0 发布:高并发支持与增量备份功能引领新升级
TDengine 3.3.5.0 版本正式发布,带来多项更新与优化。新特性包括提升 MQTT 稳定性和高并发性能、新增 taosX 增量备份与恢复、支持 JDBC 和 Rust 连接器 STMT2 接口、灵活配置 Grafana Dashboard 等。性能优化涵盖查询内存管控、多级存储迁移、强密码策略等,全面提升时序数据管理的效率和可靠性。欢迎下载体验并提出宝贵意见。
97 5
|
4月前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
112 1
|
4月前
|
缓存 NoSQL 关系型数据库
云端问道21期实操教学-应对高并发,利用云数据库 Tair(兼容 Redis®)缓存实现极速响应
本文介绍了如何通过云端问道21期实操教学,利用云数据库 Tair(兼容 Redis®)缓存实现高并发场景下的极速响应。主要内容分为四部分:方案概览、部署准备、一键部署和完成及清理。方案概览中,展示了如何使用 Redis 提升业务性能,降低响应时间;部署准备介绍了账号注册与充值步骤;一键部署详细讲解了创建 ECS、RDS 和 Redis 实例的过程;最后,通过对比测试验证了 Redis 缓存的有效性,并指导用户清理资源以避免额外费用。
|
6月前
|
JSON Java 关系型数据库
Java更新数据库报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
在Java中,使用mybatis-plus更新实体类对象到mysql,其中一个字段对应数据库中json数据类型,更新时报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
695 4
Java更新数据库报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
|
6月前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
7月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
6月前
|
存储 缓存 数据处理
如何解决数据库高并发问题?
在Web服务框架中加入缓存层,存储高频访问数据,减轻数据库读取负担;增加数据库索引提升查询速度,但需注意索引数量;实施主从读写分离,优化数据处理;对数据库进行拆分,缩小表规模以加快查询;采用分布式架构,有效分散计算压力。
67 0
|
9月前
|
存储 SQL JSON
【Azure Logic App】微软云逻辑应用连接到数据库,执行存储过程并转换执行结果为JSON数据
【Azure Logic App】微软云逻辑应用连接到数据库,执行存储过程并转换执行结果为JSON数据
【Azure Logic App】微软云逻辑应用连接到数据库,执行存储过程并转换执行结果为JSON数据
|
9月前
|
存储 缓存 NoSQL
Redis内存管理揭秘:掌握淘汰策略,让你的数据库在高并发下也能游刃有余,守护业务稳定运行!
【8月更文挑战第22天】Redis的内存淘汰策略管理内存使用,防止溢出。主要包括:noeviction(拒绝新写入)、LRU/LFU(淘汰最少使用/最不常用数据)、RANDOM(随机淘汰)及TTL(淘汰接近过期数据)。策略选择需依据应用场景、数据特性和性能需求。可通过Redis命令行工具或配置文件进行设置。
161 2
|
8月前
|
JSON 数据库 数据格式
数据库表如果有json字段,该怎么更新
数据库表如果有json字段,该怎么更新

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版