谷歌AI自动重构3D大脑,7天完成人类10万小时标注任务

简介: 谷歌提出新的循环卷积神经网络,可以自动追踪神经元并实现大脑3D成像,谷歌称其准确度较其它模型提高一个数量级。

导语:谷歌研究人员创建了能够映射大脑神经元的AI系统,7天就能完成人类需要花10万小时的标注任务,并将准确度较之前的深度学习技术提高10倍。

智东西7月17日消息,昨日,《Nature Methods》刊登了谷歌新论文《High-Precision automated reconstruction of neurons with flood-filling networks》,称其构建的AI系统将帮助神经科学家更好的理解大脑结构和功能。

映射神经系统的生物网络结构属于计算密集型的连接组学(Connectomics)研究范畴。人脑包含大约860亿个通过100亿个突触联网的神经元,对单个立方毫米神经元进行成像可以产生超过1000TB的数据。

幸运的是,AI可以提供帮助。

谷歌研究人员表示,发表在《Nature Methods》上的新论文《High-Precision automated reconstruction of neurons with flood-filling networks》或将有助于神经科学家更好地理解大脑的结构及其功能。谷歌和德国研究中心马克斯普朗克研究所( Max Planck Institute)合作开展了该研究项目。

image

就像米开朗基罗工作室里的一块大理石一样,神经元的真实形态被困在所有周围空间和其他纠缠神经元的数据中。神经科学家必须手动查看图像,识别神经元切片,并指定计算机中的每一个变成3D模型。谷歌估计,每个样品都是只有1毫米的立方体,完成对全部样品的标注需要10万小时。然而他们所研发的AI经过七天训练,就能完成相同的任务。

传统算法在追踪神经节的过程中,使用边缘检测算法识别神经节之间的边界,然后使用wateshed或graph cut等算法将未被边界分割的图像像素组合在一起。谷歌和马克斯普朗克研究所的研究人员则提出了一种模拟生成神经网络的“floor-filling Networks”模型,将两个步骤结合起来,新算法从特定像素位置开始生长,并使用循环卷积神经网络(Recurrent convolutional neural network,RCNN)不断填充一个区域,进而预测哪些像素和初始像素属于同一物体。

谷歌研究人员不是第一个将机器学习应用于连通组学的人,早在今年三月,英特尔与麻省理工学院计算机科学和人工智能实验室就合作开发了新一代脑图像处理管道。不过谷歌研究人员表示,他们的算法比以前的深度学习技术准确度提高一个数量级。该论文的共同作者Viren Jain表示,这个项目的突破在于教AI一次追踪一个神经元结构,而不是试图同时追踪每个神经元。

为了严格量化准确性,该团队提出了“预期运行长度(ERL)”的测量概念:在大脑的3D图像中给定一个随机神经元,测量算法在出错之前可以跟踪神经元在多远的距离。据研究团队称,在对100万立方微米的斑胸草雀进行脑部扫描时,该模型的表现比以前使用相同数据集的其他深度学习算法“好得多”。

“这个项目真正影响的是可以完成的神经科学研究的数量,”Viren Jain告诉Quartz,“能够以全面的方式研究大脑中神经元的实际模式是历史上神经科学家所无法实现的。”

Viren Jain和该论文的另一位主要作者Michal Januszewski在一篇博客中写道:“通过将这些自动化结果与修复剩余错误所需的少量额外人力相结合,研究人员现在能够研究鸣鸟连接组,以尝试确定斑胸草雀如何学会唱歌曲。”

除了发表论文之外,研究团队还在Github上发布了其模型的TensorFlow代码,以及面向可视化数据集的WebGL 3D软件。他们计划在未来进一步完善该系统,使突触解决过程完全自动化,并“为马克斯普朗克研究所和其他地方的项目做出贡献。”

原文发布时间为:2018-07-18
本文作者:心缘
本文来自云栖社区合作伙伴“智东西”,了解相关信息可以关注“智东西”。

相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
48 6
|
2月前
|
人工智能 机器人 API
【通义】AI视界|谷歌Q3财报:Gemini API六个月增长14倍,公司超25%的新代码由AI生成
本文内容由通义自动生成,涵盖谷歌Q3财报、马斯克xAI融资、九巨头联盟挑战英伟达、Meta加大AI投入及麻省理工研究LLM与人脑相似性等热点资讯。更多精彩内容,请访问通通知道。
|
1月前
|
人工智能 自然语言处理 算法
【通义】AI视界|OpenAI最新发布!ChatGPT搜索功能强势来了,挑战谷歌?
本文由【通义】自动生成,精选24小时内的重要资讯:OpenAI推出ChatGPT搜索功能挑战谷歌,微软披露130亿美元投资OpenAI,Reddit首次盈利股价暴涨20%,软银CEO孙正义看好英伟达及“超级AI”前景,谷歌云与沙特PIF共建全球AI中心。更多内容请访问通通知道。
|
2月前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
2月前
|
机器学习/深度学习 人工智能 算法
Nature子刊:AI模型测大脑年龄,究竟哪些因素会加速大脑衰老?
【10月更文挑战第7天】《自然医学》杂志近期发布了一项研究,介绍了一种名为BrainAge的人工智能模型,该模型可预测个体的大脑年龄并分析影响大脑衰老的因素。研究团队来自美国加州大学旧金山分校,利用英国生物银行的近50,000名参与者的数据,发现高血压、糖尿病、肥胖、吸烟、饮酒、缺乏运动及遗传因素均与大脑衰老有关。尽管存在数据集限制等局限性,BrainAge模型仍为研究大脑衰老和相关疾病提供了重要工具。
51 1
|
2月前
|
人工智能 自然语言处理 安全
Gemini 人工智能:谷歌AI重磅来袭!好消息,国内可用
Gemini 是 Google 🧠 开发的革命性人工智能模型,旨在打造一个功能强大的多模态 AI 系统。
|
2月前
|
人工智能 搜索推荐 算法
【通义】AI视界|强制谷歌交出私有AI模型数据?美政府要对谷歌进行重大拆分
本文精选了24小时内的重要科技新闻,包括OpenAI董事会考虑采用PBC公司模式、o1推理模型贡献者Luke Metz离职、美国政府计划拆分谷歌、苹果AI功能遭质疑及股票评级下调、AI教父杰弗里·辛顿对其学生解雇OpenAI CEO感到自豪等内容。此外,文章还探讨了PBC模式对OpenAI的影响及其在法律和商业实践中的潜在挑战。点击[通义官网](https://tongyi.aliyun.com/qianwen?spm=a2c6h.13046898.publish-article.10.5ff66ffaj8oqp3&code=cykjlxy964)体验更多功能。
|
2月前
|
人工智能 运维 监控
AI 时代下,操作系统如何进化与重构?
【10月更文挑战第1天】2024龙蜥操作系统大会由多家机构指导,龙蜥社区主办,聚焦AI时代下的操作系统进化与重构、生态合作及技术创新。大会汇聚政产学研力量,旨在推动智能计算未来,打造坚实的开源新基建。欲了解更多,
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。