谷歌AI自动重构3D大脑,7天完成人类10万小时标注任务

简介: 谷歌提出新的循环卷积神经网络,可以自动追踪神经元并实现大脑3D成像,谷歌称其准确度较其它模型提高一个数量级。

导语:谷歌研究人员创建了能够映射大脑神经元的AI系统,7天就能完成人类需要花10万小时的标注任务,并将准确度较之前的深度学习技术提高10倍。

智东西7月17日消息,昨日,《Nature Methods》刊登了谷歌新论文《High-Precision automated reconstruction of neurons with flood-filling networks》,称其构建的AI系统将帮助神经科学家更好的理解大脑结构和功能。

映射神经系统的生物网络结构属于计算密集型的连接组学(Connectomics)研究范畴。人脑包含大约860亿个通过100亿个突触联网的神经元,对单个立方毫米神经元进行成像可以产生超过1000TB的数据。

幸运的是,AI可以提供帮助。

谷歌研究人员表示,发表在《Nature Methods》上的新论文《High-Precision automated reconstruction of neurons with flood-filling networks》或将有助于神经科学家更好地理解大脑的结构及其功能。谷歌和德国研究中心马克斯普朗克研究所( Max Planck Institute)合作开展了该研究项目。

image

就像米开朗基罗工作室里的一块大理石一样,神经元的真实形态被困在所有周围空间和其他纠缠神经元的数据中。神经科学家必须手动查看图像,识别神经元切片,并指定计算机中的每一个变成3D模型。谷歌估计,每个样品都是只有1毫米的立方体,完成对全部样品的标注需要10万小时。然而他们所研发的AI经过七天训练,就能完成相同的任务。

传统算法在追踪神经节的过程中,使用边缘检测算法识别神经节之间的边界,然后使用wateshed或graph cut等算法将未被边界分割的图像像素组合在一起。谷歌和马克斯普朗克研究所的研究人员则提出了一种模拟生成神经网络的“floor-filling Networks”模型,将两个步骤结合起来,新算法从特定像素位置开始生长,并使用循环卷积神经网络(Recurrent convolutional neural network,RCNN)不断填充一个区域,进而预测哪些像素和初始像素属于同一物体。

谷歌研究人员不是第一个将机器学习应用于连通组学的人,早在今年三月,英特尔与麻省理工学院计算机科学和人工智能实验室就合作开发了新一代脑图像处理管道。不过谷歌研究人员表示,他们的算法比以前的深度学习技术准确度提高一个数量级。该论文的共同作者Viren Jain表示,这个项目的突破在于教AI一次追踪一个神经元结构,而不是试图同时追踪每个神经元。

为了严格量化准确性,该团队提出了“预期运行长度(ERL)”的测量概念:在大脑的3D图像中给定一个随机神经元,测量算法在出错之前可以跟踪神经元在多远的距离。据研究团队称,在对100万立方微米的斑胸草雀进行脑部扫描时,该模型的表现比以前使用相同数据集的其他深度学习算法“好得多”。

“这个项目真正影响的是可以完成的神经科学研究的数量,”Viren Jain告诉Quartz,“能够以全面的方式研究大脑中神经元的实际模式是历史上神经科学家所无法实现的。”

Viren Jain和该论文的另一位主要作者Michal Januszewski在一篇博客中写道:“通过将这些自动化结果与修复剩余错误所需的少量额外人力相结合,研究人员现在能够研究鸣鸟连接组,以尝试确定斑胸草雀如何学会唱歌曲。”

除了发表论文之外,研究团队还在Github上发布了其模型的TensorFlow代码,以及面向可视化数据集的WebGL 3D软件。他们计划在未来进一步完善该系统,使突触解决过程完全自动化,并“为马克斯普朗克研究所和其他地方的项目做出贡献。”

原文发布时间为:2018-07-18
本文作者:心缘
本文来自云栖社区合作伙伴“智东西”,了解相关信息可以关注“智东西”。

相关文章
|
1月前
|
人工智能 自然语言处理 安全
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
OPPO在2025开发者大会上展现智慧服务新范式:通过大模型与意图识别技术,构建全场景入口矩阵,实现“服务找人”。打通负一屏、小布助手等系统级入口,让服务主动触达用户;为开发者提供统一意图标准、一站式平台与安全准则,降低适配成本,共建开放生态。
262 31
|
1月前
|
人工智能 监控 安全
人体姿态[站着、摔倒、坐、深蹲、跑]检测数据集(6000张图片已划分、已标注)| AI训练适用于目标检测
本数据集包含6000张已标注人体姿态图片,覆盖站着、摔倒、坐、深蹲、跑五类动作,按5:1划分训练集与验证集,标注格式兼容YOLO等主流框架,适用于跌倒检测、健身分析、安防监控等AI目标检测任务,开箱即用,助力模型快速训练与部署。
|
1月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
315 9
|
1月前
|
人工智能 缓存 并行计算
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
235 1
|
1月前
|
人工智能 监控 算法
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含9000张已标注、已划分的行人图像,适用于人群计数与目标检测任务。支持YOLO等主流框架,涵盖街道、商场等多种场景,标注精准,结构清晰,助力AI开发者快速训练高精度模型,应用于智慧安防、人流统计等场景。
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
|
人工智能 Cloud Native 搜索推荐
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
321 0
|
1月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
1月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务

热门文章

最新文章