在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析

简介: 首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环。 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时候cpu的使用效率:1)单线程执行的时候: 2)多线程执行的时候: 3)多进程执行的时候: 总结:1)单进程单线程时,对于双核CPU的利用率只能利用一个核,没有充分利用两个核。

首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下:

 

单线程,多线程,多进程测试代码使用死循环。

 

1)单线程:

 

2)多线程:

 

3)多进程:

 

查看cpu使用效率:

 

开始观察分别执行时候cpu的使用效率:

1)单线程执行的时候:

 

2)多线程执行的时候:

 

3)多进程执行的时候:

 

总结:

1)单进程单线程时,对于双核CPU的利用率只能利用一个核,没有充分利用两个核。

2)单进程多线程时,对于双核CPU的来说,虽然两个核都用到的,不过很明显没有充分利用两个核,这里要说一个GIL(全局解释器锁)的概念:

GIL不同于线程之间的互斥锁,GIL并不是Python的特性,而是Cpython引入的一个概念。(Jpython,PYPY)

Python的代码由Python的解释器执行(CPython)。那么我们的代码什么时候被python解释器执行,由我们的GIL也就是全局解释器锁进行控制。

当我们有一个线程开始访问解释器的时候,GIL会将这把锁上锁,也就是说,其他线程无法再访问解释器,也就意味着,其他的线程无法再被执行。

 

GIL执行流程:

 

  1. 加锁GIL

  2. 切换到一个线程去执行。

  3. 运行。

  4. 解锁GIL

再次重复以上步骤。

对于下列代码GIL的执行流程:

 

import threading
import time
# 写两个函数,分别让两个线程去执行
# 这个两个函数,都要访问我的全局变量
number = 0

def test1(count):
    global number
    for i in range(count):
        number += 1
    print(number)

def test2(count):
    global number
    for i in range(count):
        number += 1
    print(number)


def main():
    th1 = threading.Thread(target=test1,args= (1000000,))
    th2 = threading.Thread(target=test2, args=(1000000,))
    th1.start()
    th2.start()

    time.sleep(5)
    print(number)

if __name__ == '__main__':
    main()

 

运行结果(这里充分的说明了多线程资源抢占问题):

流程图如下:

线程1在执行到对全局变量加一操作的时候全局解释器锁被收回,线程2申请并得到了全局解释器锁开始运行,在线程2执行完加一操作以后对全局变量进行了修改并释放了全局解释器锁。

这时线程1再次得到了全局解释器锁,从上次释放全局解释器锁的地方开始继续执行对全局变量加一的操作,记住,这里线程1中的全局变量还是开始的0,虽然线程2已经对其进行了加一的操作,但是线程1并不知道,线程1还是会接着上一次的位置开始执行,所以线程1在执行完加一操作的时候同样把1再次赋值给了全局变量num,也就是说,线程2执行完加一操作之后赋值过去的1又被线程1赋值过去的1所覆盖,加了两次等于加了一次!类似于协程,只是做了一个执行代码来回切换的操作!

所以在Python中,同一时刻,只能有一个线程被执行。所以Python中的多线程是假的

既然这样我们为什么还要用多线程呢?

其实多线程也有它的好处,例如我们在进行IO操作的时候,有效的组织了程序的阻塞,不至于一直无限的等待。

3)多进程时,对于双核CPU来说,每个进程的优先级都是同等的,所分配的资源也是相等的,两个进程的时候完全可以充分的利用双核CPU,而且由于计算密集型的任务完全是依靠于cpu的核数,所以需要尽量的完全利用cpu,这时候多进程的好处就能够完美的体现出来。

 

 

                                                                   -------  知识无价,汗水有情,如需搬运请注明出处,谢谢!

目录
相关文章
|
12天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
104 70
|
14天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
116 68
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
81 36
|
4天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
35 15
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
53 18
|
17天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
31 8
|
20天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
17天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
31 0
|
25天前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
21 0
|
25天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
56 0

热门文章

最新文章