吴恩达《机器学习》课程总结(1)引言

简介: 1.1欢迎1.2机器学习是什么(1)一种机器学习的定义:一个程序被认为能从经验E中学习,解决任务T,达到性能指标度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。(2)机器学习算法主要分为监督学习和非监督学习。

1.1欢迎

1.2机器学习是什么

(1)一种机器学习的定义:一个程序被认为能从经验E中学习,解决任务T,达到性能指标度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。

(2)机器学习算法主要分为监督学习和非监督学习。监督学习是我们将教计算机如何去完成任务,非监督学习是我们打算让计算机它自己去学习。此外还有强化学习和推荐系统等其他机器学习。

(3)本课程主要内容是监督学习、非监督学习、了解应用机器学习算法的实用建议。

1.3监督学习

(1)监督学习基本思想是我们数据集中的每个样本都有相应的“正确答案”(有标签)。再根据这些样本做出预测,像房子和肿瘤的例子。

(2)监督学习分为回归问题和分类问题,前者如房价的预测,将房价的一系列实数值看成是连续的,后者如肿瘤预测,分为良性和恶性两种类别,其取值看成是离散的。

 

回归问题

 

分类问题

1.4无监督学习

(1)无监督学习样本没有标签(“无正确答案”),无监督学习算法可能会把没有标签的数据分成不同的簇,这种算法较聚类算法。

(2)一些常见的聚类算法应用:新闻分类、基因学的理解应用、组织大型计算机集群、社交网络分析、市场分割、天文数据分析等。

相关文章
|
4月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
45 1
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
124 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
7月前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
58 1
|
7月前
|
机器学习/深度学习 人工智能 算法
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
|
7月前
|
机器学习/深度学习
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
|
7月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
|
29天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
95 4
|
8天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
43 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络