SQL老司机,在SQL中计算 array & map & json数据

本文涉及的产品
对象存储 OSS,20GB 3个月
云备份 Cloud Backup,100GB 3个月
文件存储 NAS,50GB 3个月
简介: 场景 通常,我们处理数据,一列数据类型要么是字符串,要么是数字,这些都是primitive类型的数据。在某些比较复杂的业务场景下,我们会在一列中使用复杂的格式,例如数组array, 对象(map),json等格式来表示复杂的数据,例如: __source__: 11.

场景

通常,我们处理数据,一列数据类型要么是字符串,要么是数字,这些都是primitive类型的数据。在某些比较复杂的业务场景下,我们会在一列中使用复杂的格式,例如数组array, 对象(map),json等格式来表示复杂的数据,例如:

__source__:  11.164.232.105
__tag__:__hostname__:  vm-req-170103232316569850-tianchi111932.tc
__topic__:  TestTopic_4
array_column:  [1,2,3]
double_column:  1.23
map_column:  {"a":1,"b":2}
text_column:  商品

array_column 是数组类型。假如,我们希望统计array_column中所有数值的汇总值,那么我们得遍历每一行的数组中的每一个元素。

unnest语法

  • unnest( array) as table_alias(column_name)
    表示把array类型展开成多行,行的名称为column_name。
  • unnest(map) as table(key_name, value_name)

    表示把map类型展开成多行,key的名称为key_name, value的名称为value_name
    

注意,由于unnest接收的是array或者map类型的数据,如果用户的输入是个字符串类型,那么要先转化成json类型,然后再转化成array类型或map类型,转化的方式是cast(json_parse(array_column) as array(bigint))

遍历数组每一个元素

使用SQL把array展开成多行:

* | select  array_column, a   from log, unnest( cast( json_parse(array_column)   as array(bigint) ) ) as  t(a)

上述SQL把数组展开成多行数字,unnest( cast( json_parse(array_column) as array(bigint) ) ) as t(a),unnest语法把数组展开,以t来命名新生成的表,使用a来引用展开后的列。结果如下图:

image.png

  • 统计数组中的每个元素的和
* | select   sum(a)    from log, unnest( cast( json_parse(array_column)   as array(bigint) ) ) as  t(a)

image.png

  • 按照数组中的每个元素进行group by计算
* | select   a, count(1)    from log, unnest( cast( json_parse(array_column)   as array(bigint) ) ) as  t(a)     group by a

image.png

遍历Map

  • 遍历Map中的元素
* | select  map_column , a,b    from log, unnest( cast( json_parse(map_column)   as map(varchar, bigint) ) ) as  t(a,b)

image.png

  • 按照Map的key进行group by 统计
* | select   key,  sum(value)    from log, unnest( cast( json_parse(map_column)   as map(varchar, bigint) ) ) as  t(key,value)    GROUP  BY  key

image.png

格式化显示histogram,numeric_histogram的结果

1.histogram

histogram函数类似于count group by 语法。语法参考文档

通常我们看到histogram的结果如下:

* | select histogram(method)

image.png

是一串json,无法配置视图展示,我们可以用unnest语法,把json展开成多行配置视图,例如:

* | select  key , value  from( select histogram(method) as his from log) , unnest(his ) as t(key,value)

image.png

接下来,可以配置可视化视图:

image.png

2. numeric_histogram

numeric_histogram语法是为了把数值列分配到多个桶中去,相当于对数值列进行group by,具体语法参考文档

* | select numeric_histogram(10,Latency)

numeric_histogram的输出如下:

image.png

为了格式化展示该结果,我们这样写SQL:

* |  select key,value from(select numeric_histogram(10,Latency) as his from log) , unnest(his) as t(key,value)

结果如下:

image.png

同时配置柱状图的形式展示:

image.png

目录
相关文章
|
7天前
|
SQL DataWorks 关系型数据库
DataWorks产品使用合集之数据集成时源头提供数据库自定义函数调用返回数据,数据源端是否可以写自定义SQL实现
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5天前
|
SQL 分布式计算 DataWorks
MaxCompute操作报错合集之使用sql查询一个表的分区数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
15天前
|
SQL 数据库
【SQL】已解决:SQL分组去重并合并相同数据
【SQL】已解决:SQL分组去重并合并相同数据
22 1
|
5天前
|
SQL 存储 Oracle
TDengine 3.3.2.0 发布:新增 UDT 及 Oracle、SQL Server 数据接入
**TDengine 3.3.2.0 发布摘要** - 开源与企业版均强化性能,提升WebSocket、stmt模式写入与查询效率,解决死锁,增强列显示。 - taos-explorer支持geometry和varbinary类型。 - 企业版引入UDT,允许自定义数据转换。 - 新增Oracle和SQL Server数据接入。 - 数据同步优化,支持压缩,提升元数据同步速度,错误信息细化,支持表名修改。 - 扩展跨平台支持,包括麒麟、Euler、Anolis OS等。
16 0
|
6天前
|
JSON 分布式计算 大数据
MaxCompute产品使用合集之如何解析嵌套的JSON数据
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
12天前
|
JSON JavaScript 前端开发
技术心得:利用JsonSchema校验json数据内容的合规性
技术心得:利用JsonSchema校验json数据内容的合规性
13 0
|
15天前
|
SQL 测试技术 数据库
【SQL】已解决:SQL错误(15048): 数据兼容级别有效值为100、110或120
【SQL】已解决:SQL错误(15048): 数据兼容级别有效值为100、110或120
19 0
|
19天前
|
JSON 数据格式
MysbatisPlus-核心功能-IService开发基础业务接口,MysbatisPlus_Restful风格,新增@RequestBody指定是为了接收Json数据的,使用swagger必须注解
MysbatisPlus-核心功能-IService开发基础业务接口,MysbatisPlus_Restful风格,新增@RequestBody指定是为了接收Json数据的,使用swagger必须注解
|
29天前
|
Dart
Dart之集合详解(List、Set、Map)
Dart之集合详解(List、Set、Map)
27 1
|
1月前
|
存储 JavaScript 前端开发
JavaScript进阶-Map与Set集合
【6月更文挑战第20天】JavaScript的ES6引入了`Map`和`Set`,它们是高效处理集合数据的工具。`Map`允许任何类型的键,提供唯一键值对;`Set`存储唯一值。使用`Map`时,注意键可以非字符串,用`has`检查键存在。`Set`常用于数组去重,如`[...new Set(array)]`。了解它们的高级应用,如结构转换和高效查询,能提升代码质量。别忘了`WeakMap`用于弱引用键,防止内存泄漏。实践使用以加深理解。